996 resultados para Relative complexity
Resumo:
In many primitively eusocial wasp species new nests are founded either by a single female or by a small group of females. In the single foundress nests, the lone female develops her ovaries, lays eggs as well as tends her brood. In multiple foundress nests social interactions, especially dominance-subordinate interactions, result in only one `dominant' female developing her ovaries and laying eggs. Ovaries of the remaining `subordinate' cofoundresses remain suppressed and these individuals function as workers and tend the dominant's brood. Using the tropical, primitively eusocial polistine wasp Ropalidia marginata and by comparing wasps held in isolation and those kept as pairs in the laboratory, we demonstrate that social interactions affect ovarian development of dominant and subordinate wasps among the pairs in opposite directions, suppressing the ovaries of the subordinate member of the pair below that of solitary wasps and boosting the ovaries of dominant member of the pair above that of solitary females. In addition to being of physiological interest, such mirror image effects of aggression on the ovaries of the aggressors and their victims, suggest yet another mechanism by which subordinates can enhance their indirect fitness and facilitate the evolution of worker behavior by kin selection. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
We investigate the parameterized complexity of the following edge coloring problem motivated by the problem of channel assignment in wireless networks. For an integer q >= 2 and a graph G, the goal is to find a coloring of the edges of G with the maximum number of colors such that every vertex of the graph sees at most q colors. This problem is NP-hard for q >= 2, and has been well-studied from the point of view of approximation. Our main focus is the case when q = 2, which is already theoretically intricate and practically relevant. We show fixed-parameter tractable algorithms for both the standard and the dual parameter, and for the latter problem, the result is based on a linear vertex kernel.
Resumo:
We examine relative entropy in the context of the higher spin/CFT duality. We consider 3D bulk configurations in higher spin gravity which are dual to the vacuum and a high temperature state of a CFT with W-algebra symmetries in the presence of a chemical potential for a higher spin current. The relative entropy between these states is then evaluated using the Wilson line functional for holographic entanglement entropy. In the limit of small entangling intervals, the relative entropy should vanish for a generic quantum system. We confirm this behavior by showing that the difference in the expectation values of the modular Hamiltonian between the states matches with the difference in the entanglement entropy in the short-distance regime. Additionally, we compute the relative entropy of states corresponding to smooth solutions in the SL(2, Z) family with respect to the vacuum.
Resumo:
Communication complexity refers to the minimum rate of public communication required for generating a maximal-rate secret key (SK) in the multiterminal source model of Csiszar and Narayan. Tyagi recently characterized this communication complexity for a two-terminal system. We extend the ideas in Tyagi's work to derive a lower bound on communication complexity in the general multiterminal setting. In the important special case of the complete graph pairwise independent network (PIN) model, our bound allows us to determine the exact linear communication complexity, i.e., the communication complexity when the communication and SK are restricted to be linear functions of the randomness available at the terminals.
Resumo:
QR decomposition (QRD) is a widely used Numerical Linear Algebra (NLA) kernel with applications ranging from SONAR beamforming to wireless MIMO receivers. In this paper, we propose a novel Givens Rotation (GR) based QRD (GR QRD) where we reduce the computational complexity of GR and exploit higher degree of parallelism. This low complexity Column-wise GR (CGR) can annihilate multiple elements of a column of a matrix simultaneously. The algorithm is first realized on a Two-Dimensional (2 D) systolic array and then implemented on REDEFINE which is a Coarse Grained run-time Reconfigurable Architecture (CGRA). We benchmark the proposed implementation against state-of-the-art implementations to report better throughput, convergence and scalability.
Resumo:
We consider optimal power allocation policies for a single server, multiuser system. The power is consumed in transmission of data only. The transmission channel may experience multipath fading. We obtain very efficient, low computational complexity algorithms which minimize power and ensure stability of the data queues. We also obtain policies when the users may have mean delay constraints. If the power required is a linear function of rate then we exploit linearity and obtain linear programs with low complexity.
Resumo:
We seldom mistake a closer object as being larger, even though its retinal image is bigger. One underlying mechanism could be to calculate the size of the retinal image relative to that of another nearby object. Here we set out to investigate whether single neurons in the monkey inferotemporal cortex (IT) are sensitive to the relative size of parts in a display. Each neuron was tested on shapes containing two parts that could be conjoined or spatially separated. Each shape was presented in four versions created by combining the two parts at each of two possible sizes. In this design, neurons sensitive to the absolute size of parts would show the greatest response modulation when both parts are scaled up, whereas neurons encoding relative size would show similar responses. Our main findings are that 1) IT neurons responded similarly to all four versions of a shape, but tuning tended to be more consistent between versions with proportionately scaled parts; 2) in a subpopulation of cells, we observed interactions that resulted in similar responses to proportionately scaled parts; 3) these interactions developed together with sensitivity to absolute size for objects with conjoined parts but developed slightly later for objects with spatially separate parts. Taken together, our results demonstrate for the first time that there is a subpopulation of neurons in IT that encodes the relative size of parts in a display, forming a potential neural substrate for size constancy.
Resumo:
We study the problem of finding small s-t separators that induce graphs having certain properties. It is known that finding a minimum clique s-t separator is polynomial-time solvable (Tarjan in Discrete Math. 55:221-232, 1985), while for example the problems of finding a minimum s-t separator that induces a connected graph or forms an independent set are fixed-parameter tractable when parameterized by the size of the separator (Marx et al. in ACM Trans. Algorithms 9(4): 30, 2013). Motivated by these results, we study properties that generalize cliques, independent sets, and connected graphs, and determine the complexity of finding separators satisfying these properties. We investigate these problems also on bounded-degree graphs. Our results are as follows: Finding a minimum c-connected s-t separator is FPT for c=2 and W1]-hard for any ca parts per thousand yen3. Finding a minimum s-t separator with diameter at most d is W1]-hard for any da parts per thousand yen2. Finding a minimum r-regular s-t separator is W1]-hard for any ra parts per thousand yen1. For any decidable graph property, finding a minimum s-t separator with this property is FPT parameterized jointly by the size of the separator and the maximum degree. Finding a connected s-t separator of minimum size does not have a polynomial kernel, even when restricted to graphs of maximum degree at most 3, unless .
Resumo:
Karnataka state in southern India supports a globally significant and the country's largest population of the Asian elephant Elephas maximus. A reliable map of Asian elephant distribution and measures of spatial variation in their abundance, both vital needs for conservation and management action, are unavailable not only in Karnataka, but across its global range. Here, we use various data gathered between 2000 and 2015 to map the distribution of elephants in Karnataka at the scale of the smallest forest management unit, the `beat', while also presenting data on elephant dung density for a subset of `elephant beats.' Elephants occurred in 972 out of 2855 forest beats of Karnataka. Sixty percent of these 972 beats and 55% of the forest habitat lay outside notified protected areas (PM), and included lands designated for agricultural production and human dwelling. While median elephant dung density inside protected areas was nearly thrice as much as outside, elephants routinely occurred in or used habitats outside PM where human density, land fraction under cultivation, and the interface between human-dominated areas and forests were greater. Based on our data, it is clear that India's framework for elephant conservation which legally protects the species wherever it occurs, but protects only some of its habitats while being appropriate in furthering their conservation within PM, seriously falters in situations where elephants reside in and/or seasonally use areas outside PAs. Attempts to further elephant conservation in production and dwelling areas have extracted high costs in human, elephant, material and monetary terms in Karnataka. In such settings, conservation planning exercises are necessary to determine where the needs of elephants or humans must take priority over the other, and to achieve that in a manner that is based not only on reliable scientific data but also on a process of public reasoning. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Minimization problems with respect to a one-parameter family of generalized relative entropies are studied. These relative entropies, which we term relative alpha-entropies (denoted I-alpha), arise as redundancies under mismatched compression when cumulants of compressed lengths are considered instead of expected compressed lengths. These parametric relative entropies are a generalization of the usual relative entropy (Kullback-Leibler divergence). Just like relative entropy, these relative alpha-entropies behave like squared Euclidean distance and satisfy the Pythagorean property. Minimizers of these relative alpha-entropies on closed and convex sets are shown to exist. Such minimizations generalize the maximum Renyi or Tsallis entropy principle. The minimizing probability distribution (termed forward I-alpha-projection) for a linear family is shown to obey a power-law. Other results in connection with statistical inference, namely subspace transitivity and iterated projections, are also established. In a companion paper, a related minimization problem of interest in robust statistics that leads to a reverse I-alpha-projection is studied.
Resumo:
In part I of this two-part work, certain minimization problems based on a parametric family of relative entropies (denoted I-alpha) were studied. Such minimizers were called forward I-alpha-projections. Here, a complementary class of minimization problems leading to the so-called reverse I-alpha-projections are studied. Reverse I-alpha-projections, particularly on log-convex or power-law families, are of interest in robust estimation problems (alpha > 1) and in constrained compression settings (alpha < 1). Orthogonality of the power-law family with an associated linear family is first established and is then exploited to turn a reverse I-alpha-projection into a forward I-alpha-projection. The transformed problem is a simpler quasi-convex minimization subject to linear constraints.
Resumo:
The impulse response of wireless channels between the N-t transmit and N-r receive antennas of a MIMO-OFDM system are group approximately sparse (ga-sparse), i.e., NtNt the channels have a small number of significant paths relative to the channel delay spread and the time-lags of the significant paths between transmit and receive antenna pairs coincide. Often, wireless channels are also group approximately cluster-sparse (gac-sparse), i.e., every ga-sparse channel consists of clusters, where a few clusters have all strong components while most clusters have all weak components. In this paper, we cast the problem of estimating the ga-sparse and gac-sparse block-fading and time-varying channels in the sparse Bayesian learning (SBL) framework and propose a bouquet of novel algorithms for pilot-based channel estimation, and joint channel estimation and data detection, in MIMO-OFDM systems. The proposed algorithms are capable of estimating the sparse wireless channels even when the measurement matrix is only partially known. Further, we employ a first-order autoregressive modeling of the temporal variation of the ga-sparse and gac-sparse channels and propose a recursive Kalman filtering and smoothing (KFS) technique for joint channel estimation, tracking, and data detection. We also propose novel, parallel-implementation based, low-complexity techniques for estimating gac-sparse channels. Monte Carlo simulations illustrate the benefit of exploiting the gac-sparse structure in the wireless channel in terms of the mean square error (MSE) and coded bit error rate (BER) performance.
Resumo:
We consider near-optimal policies for a single user transmitting on a wireless channel which minimize average queue length under average power constraint. The power is consumed in transmission of data only. We consider the case when the power used in transmission is a linear function of the data transmitted. The transmission channel may experience multipath fading. Later, we also extend these results to the multiuser case. We show that our policies can be used in a system with energy harvesting sources at the transmitter. Next we consider data users which require minimum rate guarantees. Finally we consider the system which has both data and real time users. Our policies have low computational complexity, closed form expression for mean delays and require only the mean arrival rate with no queue length information.
Resumo:
The relative energies of triangular face sharing condensed macro polyhedral carboranes: CB20H18 and C2B19H18+ derived from mono- and di-substitution of carbons in (4) B21H18- is calculated at B3LYP/6-31G* level. The relative energies, H center dot center dot center dot H non-bonding distances, NICS values, topological charge analysis and orbital overlap compatibility connotes the face sharing condensed macro polyhedral mono-carboranes, 8 (4-CB20H18) to be the lowest energy isomer. The di-carba- derivative, (36) 4,4'a-C2B19H18+ with carbons substituted in a different B-12 cage in (4) B21H18- in anti-fashion is the most stable isomer among 28 possibilities. This structure has less non-bonding H center dot center dot center dot H interaction and is in agreement with orbital-overlap compatibility, and these two have the pivotal role in deciding the stability of these clusters. An estimate of the inherent stability of these carboranes is made using near-isodesmic equations which show that CB20H18 (8) is in the realm of the possible. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
In the POSSIBLE WINNER problem in computational social choice theory, we are given a set of partial preferences and the question is whether a distinguished candidate could be made winner by extending the partial preferences to linear preferences. Previous work has provided, for many common voting rules, fixed parameter tractable algorithms for the POSSIBLE WINNER problem, with number of candidates as the parameter. However, the corresponding kernelization question is still open and in fact, has been mentioned as a key research challenge 10]. In this paper, we settle this open question for many common voting rules. We show that the POSSIBLE WINNER problem for maximin, Copeland, Bucklin, ranked pairs, and a class of scoring rules that includes the Borda voting rule does not admit a polynomial kernel with the number of candidates as the parameter. We show however that the COALITIONAL MANIPULATION problem which is an important special case of the POSSIBLE WINNER problem does admit a polynomial kernel for maximin, Copeland, ranked pairs, and a class of scoring rules that includes the Borda voting rule, when the number of manipulators is polynomial in the number of candidates. A significant conclusion of our work is that the POSSIBLE WINNER problem is harder than the COALITIONAL MANIPULATION problem since the COALITIONAL MANIPULATION problem admits a polynomial kernel whereas the POSSIBLE WINNER problem does not admit a polynomial kernel. (C) 2015 Elsevier B.V. All rights reserved.