974 resultados para Regional Variation
Resumo:
Arterial stiffness is an independent marker of cardiovascular events. Pulse wave velocity (PWV) is a validated method to detect arterial stiffness that can be influenced by several factors including age and blood pressure. However, it is not clear whether PWV could be influenced by circadian variations. In the present study, the authors measured blood pressure and carotid-femoral PWV measurements in 15 young healthy volunteers in 4 distinct periods: 8 am, noon, 4 pm, and 8 pm. No significant variations of systolic (P=.92), mean (P=.77), and diastolic (P=.66) blood pressure among 8 am (113 +/- 15, 84 +/- 8, 69 +/- 6 mm Hg), noon (114 +/- 13, 83 +/- 8, 68 +/- 6 mm Hg), 4 pm (114 +/- 13, 85 +/- 8, 70 +/- 7 mm Hg), and 8 pm (113 +/- 7, 83 +/- 10, 68 +/- 7 mm Hg), respectively, were observed. Similarly, carotid-femoral PWV did not change among the periods (8 am: 7.6 +/- 1.4 m/s, noon: 7.4 +/- 1.1 m/s, 4 pm: 7.6 +/- 1.0 m/s, 8 pm, 7.6 +/- 1.3 m/s; P=.85). Considering all measurements, mean blood pressure significantly correlated with PWV (r=.31; P=.016). In young healthy volunteers, there is no significant circadian variation of carotid-femoral PWV. These findings support the concept that it does not appear mandatory to perform PWV measurements at exactly the same period of the day. J Clin Hypertens (Greenwich). 2011;13:19-22. (c) 2010 Wiley Periodicals, Inc.
Resumo:
Objectives We studied the relationship between changes in body composition and changes in blood pressure levels. Background The mechanisms underlying the frequently observed progression from pre-hypertension to hypertension are poorly understood. Methods We examined 1,145 subjects from a population-based survey at baseline in 1994/1995 and at follow-up in 2004/2005. First, we studied individuals pre-hypertensive at baseline who, during 10 years of follow-up, either had normalized blood pressure (PreNorm, n = 48), persistently had pre-hypertension (PrePre, n = 134), or showed progression to hypertension (PreHyp, n = 183). In parallel, we studied predictors for changes in blood pressure category in individuals hypertensive at baseline (n = 429). Results After 10 years, the PreHyp group was characterized by a marked increase in body weight (+5.71% [95% confidence interval (CI): 4.60% to 6.83%]) that was largely the result of an increase in fat mass (+17.8% [95% CI: 14.5% to 21.0%]). In the PrePre group, both the increases in body weight (+1.95% [95% CI: 0.68% to 3.22%]) and fat mass (+8.09% [95% CI: 4.42% to 11.7%]) were significantly less pronounced than in the PreHyp group (p < 0.001 for both). The PreNorm group showed no significant change in body weight (-1.55% [95% CI: -3.70% to 0.61%]) and fat mass (+0.20% [95% CI: -6.13% to 6.52%], p < 0.05 for both, vs. the PrePre group). Conclusions After 10 years of follow-up, hypertension developed in 50.1% of individuals with pre-hypertension and only 6.76% went from hypertensive to pre-hypertensive blood pressure levels. An increase in body weight and fat mass was a risk factor for the development of sustained hypertension, whereas a decrease was predictive of a decrease in blood pressure. (J Am Coll Cardiol 2010; 56: 65-76) (C) 2010 by the American College of Cardiology Foundation
Resumo:
Purpose: The aim of this study was to investigate the impact of acute PaCO(2) temporal variation on the standard base excess (SBE) value in critically ill patients. Methods: A total of 265 patients were prospectively observed; 158 were allocated to the modeling group, and 107 were allocated to the validation group. Two models were developed in the modeling group (one including and one excluding PaCO(2) as a variable determinant of SBE), and both were tested in the validation group. Results: In the modeling group, the mathematical model including SIDai, SIG, L-lactate, albumin, phosphate, and PaCO(2) had a predictive superiority in comparison with the model without PaCO(2) (R(2) = 0.978 and 0.916, respectively). In the validation group, the results were confirmed with significant F change statistics (R(2) change = 0.059, P < .001) between the model with and without PaCO(2). A high correlation (R = 0.99, P < .001) and agreement (bias = -0.25 mEq/L, limits of agreement 95% = -0.72 to 0.22 mEq/L) were found between the model-predicted SBE value and the SBE calculated using the Van Slyke equation. Conclusions: Acute PaCO(2), temporal variation is related to SBE changes in critically ill patients. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
OBJECTIVE: A giant fusiform aneurysm in the posterior cerebral artery (PCA) is rare, as is fenestration of the PCA and basilar apex variation. We describe the angiographic and surgical findings of a giant fusiform aneurysm in the P1-P2 PCA segment associated with PCA bilateral fenestration and superior cerebellar artery double origin. CLINICAL PRESENTATION: A 26-year-old woman presented with a 2-month history of visual blurring. Digital subtraction angiography showed a giant (2.5 cm) fusiform PCA aneurysm in the right P1-P2 segment. The 3-dimensional view showed a caudal fusion pattern from the upper portion of the basilar artery associated with a bilateral long fenestration of the P1 and P2 segments and superior cerebellar artery double origin. INTERVENTION: Surgical trapping of the right P1 -P2 segment, including the posterior communicating artery, was performed by a pretemporal approach. Angiograms performed 3 and 13 months after surgery showed complete aneurysm exclusion, and the PCA was permeated and filled the PCA territory. Clinical follow-up at 14 months showed the patient with no deficits and a return to normal life. CONCLUSION: To our knowledge, this is the first report of a giant fusiform aneurysm of the PCA associated with P1-P2 segment fenestration and other variations of the basilar apex (bilateral superior cerebellar artery duplication and caudal fusion). Comprehension of the embryology and anatomy of the PCA and its related vessels and branches is fundamental to the decision-making process for a PCA aneurysm, especially when parent vessel occlusion is planned.
Resumo:
Background and objective: Dynamic indices represented by systolic pressure variation and pulse pressure variation have been demonstrated to be more accurate than filling pressures in predicting fluid responsiveness. However, the literature is scarce concerning the impact of different ventilatory modes on these indices. We hypothesized that systolic pressure variation or pulse pressure variation could be affected differently by volume-controlled ventilation and pressure-controlled ventilation in an experimental model, during normovolaemia and hypovolaemia. Method: Thirty-two anaesthetized rabbits were randomly allocated into four groups according to ventilatory modality and volaemic status where G1-ConPCV was the pressure-controlled ventilation control group, G2-HemPCV was associated with haemorrhage, G3-ConVCV was the volume-controlled ventilation control group and G4-HemVCV was associated with haemorrhage. In the haemorrhage groups, blood was removed in two stages: 15% of the estimated blood volume withdrawal at M1, and, 30 min later, an additional 15% at M2. Data were submitted to analysis of variance for repeated measures; a value of P < 0.05 was considered to be statistically significant. Results: At MO (baseline), no significant differences were observed among groups. At M1, dynamic parameters differed significantly among the control and hypovolaemic groups (P < 0.05) but not between ventilation modes. However, when 30% of the estimated blood volume was removed (M2), dynamic parameters became significantly higher in animals under volume-controlled ventilation when compared with those under pressure-controlled ventilation. Conclusions: Under normovolaemia and moderate haemorrhage, dynamic parameters were not influenced by either ventilatory modalities. However, in the second stage of haemorrhage (30%), animals in volume-controlled ventilation presented higher values of systolic pressure variation and pulse pressure variation when compared with those submitted to pressure-controlled ventilation.
Resumo:
Cardiac sympathetic denervation and ventricular arrhythmia are frequently observed in chronic Chagas cardiomyopathy (CCC). This study quantitatively evaluated the association between cardiac sympathetic denervation and sustained ventricular tachycardia (SVT) in patients with CCC. Methods: We prospectively investigated patients with CCC and left ventricular ejection fraction (LVEF) greater than 35% with SVT (SVT group: n = 5 15; mean age +/- SD, 61 +/- 8 y; LVEF, 51% +/- 8%) and patients without SVT (non-SVT group: n = 11; mean age +/- SD, 55 +/- 10 y; LVEF, 57% +/- 10%). Patients underwent myocardial scintigraphy with (123)I-metaiodobenzylguanidine ((123)I-MIBG) for the evaluation of sympathetic innervation and resting perfusion with (99m)Tc-methoxyisobutylisonitrile ((99m)Tc-MIBI) for the evaluation of myocardial viability. A visual semiquantitative score was attributed for regional uptake of each radiotracer using a 17-segment left ventricular segmentation model (0, normal; 4, absence of uptake). A mismatch defect was defined as occurring in segments with a 99mTc-MIBI uptake score of 0 or 1 and a (123)I-MIBG score of 2 or more. Results: Compared with the non-SVT group, the SVT group had a similar (99m)Tc-MIBI summed score (6.9 +/- 7.5 vs. 4.4 +/- 5.2, respectively, P = 0.69) but a higher (123)I-MIBG summed score (10.9 +/- 7.8 vs. 22.4 +/- 9.5, respectively, P = 0.007) and a higher number of mismatch defects per patient (2.0 +/- 2.2 vs. 7.1 +/- 2.0, respectively, P < 0.0001). The presence of more than 3 mismatch defects was strongly associated with the presence of SVT (93% sensitivity, 82% specificity; P = 0.0002). Conclusion: In CCC, the amount of sympathetically denervated viable myocardium is associated with the occurrence of SVT. Myocardial sympathetic denervation may participate in triggering malignant ventricular arrhythmia in CCC patients with relatively well-preserved ventricular function.