948 resultados para Random matrix theory
Resumo:
We review the status of integrable models from the point of view of their dynamics and integrability conditions. A few integrable models are discussed in detail. We comment on the use it is made of them in string theory. We also discuss the SO(6) symmetric Hamiltonian with SO(6) boundary. This work is especially prepared for the 70th anniversaries of Andr, Swieca (in memoriam) and Roland Koberle.
Resumo:
Starting from the Fisher matrix for counts in cells, we derive the full Fisher matrix for surveys of multiple tracers of large-scale structure. The key step is the classical approximation, which allows us to write the inverse of the covariance of the galaxy counts in terms of the naive matrix inverse of the covariance in a mixed position-space and Fourier-space basis. We then compute the Fisher matrix for the power spectrum in bins of the 3D wavenumber , the Fisher matrix for functions of position (or redshift z) such as the linear bias of the tracers and/or the growth function and the cross-terms of the Fisher matrix that expresses the correlations between estimations of the power spectrum and estimations of the bias. When the bias and growth function are fully specified, and the Fourier-space bins are large enough that the covariance between them can be neglected, the Fisher matrix for the power spectrum reduces to the widely used result that was first derived by Feldman, Kaiser & Peacock. Assuming isotropy, a fully analytical calculation of the Fisher matrix in the classical approximation can be performed in the case of a constant-density, volume-limited survey.
Resumo:
The ground-state phase diagram of an Ising spin-glass model on a random graph with an arbitrary fraction w of ferromagnetic interactions is analysed in the presence of an external field. Using the replica method, and performing an analysis of stability of the replica-symmetric solution, it is shown that w = 1/2, corresponding to an unbiased spin glass, is a singular point in the phase diagram, separating a region with a spin-glass phase (w < 1/2) from a region with spin-glass, ferromagnetic, mixed and paramagnetic phases (w > 1/2).
Resumo:
We investigate the classical integrability of the Alday-Arutyunov-Frolov model, and show that the Lax connection can be reduced to a simpler 2 x 2 representation. Based on this result, we calculate the algebra between the L-operators and find that it has a highly non-ultralocal form. We then employ and make a suitable generalization of the regularization technique proposed by Mail let for a simpler class of non-ultralocal models, and find the corresponding r- and s-matrices. We also make a connection between the operator-regularization method proposed earlier for the quantum case, and the Mail let's symmetric limit regularization prescription used for non-ultralocal algebras in the classical theory.
Resumo:
[EN]Research and theory on second language reading has reached heightened dimensions in recent years. It is through reading that learners access much information concerning the target language and culture, and consequently reading is an important part of almost all language programs across stages of acquisition. The purpose of this article is to offer informed suggestions for the foreign language instructor of reading. The ideas given in this paper constitute a collaborative project that developed as part of a graduate seminar on L2 Reading and Writing taught at Washington University in St. Louis.
Resumo:
This thesis is focused on the financial model for interest rates called the LIBOR Market Model. In the appendixes, we provide the necessary mathematical theory. In the inner chapters, firstly, we define the main interest rates and financial instruments concerning with the interest rate models, then, we set the LIBOR market model, demonstrate its existence, derive the dynamics of forward LIBOR rates and justify the pricing of caps according to the Black’s formula. Then, we also present the Swap Market Model, which models the forward swap rates instead of the LIBOR ones. Even this model is justified by a theoretical demonstration and the resulting formula to price the swaptions coincides with the Black’s one. However, the two models are not compatible from a theoretical point. Therefore, we derive various analytical approximating formulae to price the swaptions in the LIBOR market model and we explain how to perform a Monte Carlo simulation. Finally, we present the calibration of the LIBOR market model to the markets of both caps and swaptions, together with various examples of application to the historical correlation matrix and the cascade calibration of the forward volatilities to the matrix of implied swaption volatilities provided by the market.
Resumo:
This thesis presents some different techniques designed to drive a swarm of robots in an a-priori unknown environment in order to move the group from a starting area to a final one avoiding obstacles. The presented techniques are based on two different theories used alone or in combination: Swarm Intelligence (SI) and Graph Theory. Both theories are based on the study of interactions between different entities (also called agents or units) in Multi- Agent Systems (MAS). The first one belongs to the Artificial Intelligence context and the second one to the Distributed Systems context. These theories, each one from its own point of view, exploit the emergent behaviour that comes from the interactive work of the entities, in order to achieve a common goal. The features of flexibility and adaptability of the swarm have been exploited with the aim to overcome and to minimize difficulties and problems that can affect one or more units of the group, having minimal impact to the whole group and to the common main target. Another aim of this work is to show the importance of the information shared between the units of the group, such as the communication topology, because it helps to maintain the environmental information, detected by each single agent, updated among the swarm. Swarm Intelligence has been applied to the presented technique, through the Particle Swarm Optimization algorithm (PSO), taking advantage of its features as a navigation system. The Graph Theory has been applied by exploiting Consensus and the application of the agreement protocol with the aim to maintain the units in a desired and controlled formation. This approach has been followed in order to conserve the power of PSO and to control part of its random behaviour with a distributed control algorithm like Consensus.
Resumo:
In this thesis we provide a characterization of probabilistic computation in itself, from a recursion-theoretical perspective, without reducing it to deterministic computation. More specifically, we show that probabilistic computable functions, i.e., those functions which are computed by Probabilistic Turing Machines (PTM), can be characterized by a natural generalization of Kleene's partial recursive functions which includes, among initial functions, one that returns identity or successor with probability 1/2. We then prove the equi-expressivity of the obtained algebra and the class of functions computed by PTMs. In the the second part of the thesis we investigate the relations existing between our recursion-theoretical framework and sub-recursive classes, in the spirit of Implicit Computational Complexity. More precisely, endowing predicative recurrence with a random base function is proved to lead to a characterization of polynomial-time computable probabilistic functions.
Resumo:
Coupled-cluster (CC) theory is one of the most successful approaches in high-accuracy quantum chemistry. The present thesis makes a number of contributions to the determination of molecular properties and excitation energies within the CC framework. The multireference CC (MRCC) method proposed by Mukherjee and coworkers (Mk-MRCC) has been benchmarked within the singles and doubles approximation (Mk-MRCCSD) for molecular equilibrium structures. It is demonstrated that Mk-MRCCSD yields reliable results for multireference cases where single-reference CC methods fail. At the same time, the present work also illustrates that Mk-MRCC still suffers from a number of theoretical problems and sometimes gives rise to results of unsatisfactory accuracy. To determine polarizability tensors and excitation spectra in the MRCC framework, the Mk-MRCC linear-response function has been derived together with the corresponding linear-response equations. Pilot applications show that Mk-MRCC linear-response theory suffers from a severe problem when applied to the calculation of dynamic properties and excitation energies: The Mk-MRCC sufficiency conditions give rise to a redundancy in the Mk-MRCC Jacobian matrix, which entails an artificial splitting of certain excited states. This finding has established a new paradigm in MRCC theory, namely that a convincing method should not only yield accurate energies, but ought to allow for the reliable calculation of dynamic properties as well. In the context of single-reference CC theory, an analytic expression for the dipole Hessian matrix, a third-order quantity relevant to infrared spectroscopy, has been derived and implemented within the CC singles and doubles approximation. The advantages of analytic derivatives over numerical differentiation schemes are demonstrated in some pilot applications.
Resumo:
This thesis deals with three different physical models, where each model involves a random component which is linked to a cubic lattice. First, a model is studied, which is used in numerical calculations of Quantum Chromodynamics.In these calculations random gauge-fields are distributed on the bonds of the lattice. The formulation of the model is fitted into the mathematical framework of ergodic operator families. We prove, that for small coupling constants, the ergodicity of the underlying probability measure is indeed ensured and that the integrated density of states of the Wilson-Dirac operator exists. The physical situations treated in the next two chapters are more similar to one another. In both cases the principle idea is to study a fermion system in a cubic crystal with impurities, that are modeled by a random potential located at the lattice sites. In the second model we apply the Hartree-Fock approximation to such a system. For the case of reduced Hartree-Fock theory at positive temperatures and a fixed chemical potential we consider the limit of an infinite system. In that case we show the existence and uniqueness of minimizers of the Hartree-Fock functional. In the third model we formulate the fermion system algebraically via C*-algebras. The question imposed here is to calculate the heat production of the system under the influence of an outer electromagnetic field. We show that the heat production corresponds exactly to what is empirically predicted by Joule's law in the regime of linear response.
Resumo:
Mr. Pechersky set out to examine a specific feature of the employer-employee relationship in Russian business organisations. He wanted to study to what extent the so-called "moral hazard" is being solved (if it is being solved at all), whether there is a relationship between pay and performance, and whether there is a correlation between economic theory and Russian reality. Finally, he set out to construct a model of the Russian economy that better reflects the way it actually functions than do certain other well-known models (for example models of incentive compensation, the Shapiro-Stiglitz model etc.). His report was presented to the RSS in the form of a series of manuscripts in English and Russian, and on disc, with many tables and graphs. He begins by pointing out the different examples of randomness that exist in the relationship between employee and employer. Firstly, results are frequently affected by circumstances outside the employee's control that have nothing to do with how intelligently, honestly, and diligently the employee has worked. When rewards are based on results, uncontrollable randomness in the employee's output induces randomness in their incomes. A second source of randomness involves the outside events that are beyond the control of the employee that may affect his or her ability to perform as contracted. A third source of randomness arises when the performance itself (rather than the result) is measured, and the performance evaluation procedures include random or subjective elements. Mr. Pechersky's study shows that in Russia the third source of randomness plays an important role. Moreover, he points out that employer-employee relationships in Russia are sometimes opposite to those in the West. Drawing on game theory, he characterises the Western system as follows. The two players are the principal and the agent, who are usually representative individuals. The principal hires an agent to perform a task, and the agent acquires an information advantage concerning his actions or the outside world at some point in the game, i.e. it is assumed that the employee is better informed. In Russia, on the other hand, incentive contracts are typically negotiated in situations in which the employer has the information advantage concerning outcome. Mr. Pechersky schematises it thus. Compensation (the wage) is W and consists of a base amount, plus a portion that varies with the outcome, x. So W = a + bx, where b is used to measure the intensity of the incentives provided to the employee. This means that one contract will be said to provide stronger incentives than another if it specifies a higher value for b. This is the incentive contract as it operates in the West. The key feature distinguishing the Russian example is that x is observed by the employer but is not observed by the employee. So the employer promises to pay in accordance with an incentive scheme, but since the outcome is not observable by the employee the contract cannot be enforced, and the question arises: is there any incentive for the employer to fulfil his or her promises? Mr. Pechersky considers two simple models of employer-employee relationships displaying the above type of information symmetry. In a static framework the obtained result is somewhat surprising: at the Nash equilibrium the employer pays nothing, even though his objective function contains a quadratic term reflecting negative consequences for the employer if the actual level of compensation deviates from the expectations of the employee. This can lead, for example, to labour turnover, or the expenses resulting from a bad reputation. In a dynamic framework, the conclusion can be formulated as follows: the higher the discount factor, the higher the incentive for the employer to be honest in his/her relationships with the employee. If the discount factor is taken to be a parameter reflecting the degree of (un)certainty (the higher the degree of uncertainty is, the lower is the discount factor), we can conclude that the answer to the formulated question depends on the stability of the political, social and economic situation in a country. Mr. Pechersky believes that the strength of a market system with private property lies not just in its providing the information needed to compute an efficient allocation of resources in an efficient manner. At least equally important is the manner in which it accepts individually self-interested behaviour, but then channels this behaviour in desired directions. People do not have to be cajoled, artificially induced, or forced to do their parts in a well-functioning market system. Instead, they are simply left to pursue their own objectives as they see fit. Under the right circumstances, people are led by Adam Smith's "invisible hand" of impersonal market forces to take the actions needed to achieve an efficient, co-ordinated pattern of choices. The problem is that, as Mr. Pechersky sees it, there is no reason to believe that the circumstances in Russia are right, and the invisible hand is doing its work properly. Political instability, social tension and other circumstances prevent it from doing so. Mr. Pechersky believes that the discount factor plays a crucial role in employer-employee relationships. Such relationships can be considered satisfactory from a normative point of view, only in those cases where the discount factor is sufficiently large. Unfortunately, in modern Russia the evidence points to the typical discount factor being relatively small. This fact can be explained as a manifestation of aversion to risk of economic agents. Mr. Pechersky hopes that when political stabilisation occurs, the discount factors of economic agents will increase, and the agent's behaviour will be explicable in terms of more traditional models.
Resumo:
The problem of estimating the numbers of motor units N in a muscle is embedded in a general stochastic model using the notion of thinning from point process theory. In the paper a new moment type estimator for the numbers of motor units in a muscle is denned, which is derived using random sums with independently thinned terms. Asymptotic normality of the estimator is shown and its practical value is demonstrated with bootstrap and approximative confidence intervals for a data set from a 31-year-old healthy right-handed, female volunteer. Moreover simulation results are presented and Monte-Carlo based quantiles, means, and variances are calculated for N in{300,600,1000}.
Resumo:
In many applications the observed data can be viewed as a censored high dimensional full data random variable X. By the curve of dimensionality it is typically not possible to construct estimators that are asymptotically efficient at every probability distribution in a semiparametric censored data model of such a high dimensional censored data structure. We provide a general method for construction of one-step estimators that are efficient at a chosen submodel of the full-data model, are still well behaved off this submodel and can be chosen to always improve on a given initial estimator. These one-step estimators rely on good estimators of the censoring mechanism and thus will require a parametric or semiparametric model for the censoring mechanism. We present a general theorem that provides a template for proving the desired asymptotic results. We illustrate the general one-step estimation methods by constructing locally efficient one-step estimators of marginal distributions and regression parameters with right-censored data, current status data and bivariate right-censored data, in all models allowing the presence of time-dependent covariates. The conditions of the asymptotics theorem are rigorously verified in one of the examples and the key condition of the general theorem is verified for all examples.
Resumo:
Despite the widespread popularity of linear models for correlated outcomes (e.g. linear mixed models and time series models), distribution diagnostic methodology remains relatively underdeveloped in this context. In this paper we present an easy-to-implement approach that lends itself to graphical displays of model fit. Our approach involves multiplying the estimated margional residual vector by the Cholesky decomposition of the inverse of the estimated margional variance matrix. The resulting "rotated" residuals are used to construct an empirical cumulative distribution function and pointwise standard errors. The theoretical framework, including conditions and asymptotic properties, involves technical details that are motivated by Lange and Ryan (1989), Pierce (1982), and Randles (1982). Our method appears to work well in a variety of circumstances, including models having independent units of sampling (clustered data) and models for which all observations are correlated (e.g., a single time series). Our methods can produce satisfactory results even for models that do not satisfy all of the technical conditions stated in our theory.
Resumo:
Under a two-level hierarchical model, suppose that the distribution of the random parameter is known or can be estimated well. Data are generated via a fixed, but unobservable realization of this parameter. In this paper, we derive the smallest confidence region of the random parameter under a joint Bayesian/frequentist paradigm. On average this optimal region can be much smaller than the corresponding Bayesian highest posterior density region. The new estimation procedure is appealing when one deals with data generated under a highly parallel structure, for example, data from a trial with a large number of clinical centers involved or genome-wide gene-expession data for estimating individual gene- or center-specific parameters simultaneously. The new proposal is illustrated with a typical microarray data set and its performance is examined via a small simulation study.