917 resultados para RUMEN FERMENTATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objetivou-se no presente trabalho verificar a degradação ruminal e a digestibilidade intestinal e total da matéria seca (MS) e da proteína bruta (PB) do farelo de soja, do grão de milho, do melaço em pó, da farinha de peixe, da farinha de penas e do feno de alfafa, por intermédio da técnica de degradabilidade ruminal in situ associada à técnica do saco de náilon móvel. As amostras dos alimentos foram moídas e colocadas em duplicata em sacos de náilon de 10x5 cm (48 micras) nas quantidades de 15 e 5 mg de MS/cm² para os alimentos concentrados e feno de alfafa, respectivamente. Os sacos de náilon permaneceram incubados no rúmen de bois holandeses por 0; 2; 6; 8; 24 e 48 h; e 0; 8; 12; 24; 48; 72 e 96 horas, respectivamente, sendo depois retirados e sua duplicata inserida no duodeno através de uma cânula. Posteriormente, os sacos foram coletados junto com as fezes. Os valores de degradabilidade efetiva da PB para uma velocidade de passagem de 5%/hora, para o melaço em pó, grão de milho, farelo de soja, farinha de peixe, farinha de penas e feno de alfafa, foram de 100,00; 62,50; 57,90; 39,30; 34,20 e 60,90%, respectivamente; a digestibilidade intestinal de 100,00; 96,05; 99,79; 98,19; 96,07 e 94,64%, respectivamente; e a digestibilidade total de 100,00; 97,86; 99,87; 98,88; 97,35 e 98,09%, respectivamente. Verificou-se que as proteínas do melaço foram totalmente solúveis no rúmen, sendo as do milho, feno e farelo de soja bastante degradadas, além de possuírem um aproveitamento quase total no intestino. As proteínas das farinhas de peixe e de penas apresentaram baixa solubilidade ruminal e alta digestibilidade intestinal, sendo a farinha de peixe levemente mais digerida no intestino do que a farinha de penas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth of Lactobacillus fermentum was studied in mixed culture with Saccharomyces cerevisiae during alcoholic fermentation of high test molasses (HTM). Yeast extract or a group of 17 amino acids caused a strong and fast decrease in yeast viability due to the strong increase of acidity produced by bacteria. Pure culture of Lactobacillus fermentum in dry sugar cane broth confirmed amino acids as the main nutrients needed to stimulate the growth of bacterial contaminant during alcoholic fermentation. The absence of L. fermentum growth was obtained when leucine: isoleucine or valine were not added to the medium. Phenylalanine, alanine, glutamic acid, cystine, proline, histidine, arginine, threonine, tryptophane, serine and methionine inhibited the bacterial growth at least in one of the cultures of L. fermentum tested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the effect of diets containing sorghum silages with higher (HT) and lower-tannin (LT) concentrations supplemented with concentrate or urea on intake, digestibility, ruminal digestibility, methane emission and rumen parameters in beef cattle. Four treatments were distributed according to a 2 x 2 factorial arrangement in a duplicate 4 x 4 Latin square: LT sorghum silage + urea, LT sorghum silage + concentrate, HT sorghum silage + urea, and HT sorghum silage + concentrate. Total digestibility of the organic matter was higher when concentrate was included in the diet (0.749 and 0.753 in the LT and HT treatments, respectively). It was observed lower ruminal apparent digested matter of neutral detergent fiber in HT diets. There was no effect of tannin levels on digestibility and methane emission. The supplementation with concentrate in the LT diet decreased gas losses as a function of gross energy intake in comparison to the supplementation of the diet with urea. These results suggest the potential of concentrate supplementation to minimize energy loss as methane emission by ruminants and increase the efficiency of energy utilization. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maltose and glucose fermentations by industrial brewing and wine yeasts strains were strongly affected by the structural complexity of the nitrogen source. In this study, four Saccharomyces cerevisiae strains, two brewing and two wine yeasts, were grown in a medium containing maltose or glucose supplemented with a nitrogen source varying from a single ammonium salt (ammonium sulfate) to free amino acids (casamino acids) and peptides (peptone). Diauxie was observed at low sugar concentration for brewing and wine strains, independent of nitrogen supplementation, and the type of sugar. At high sugar concentrations altered patterns of sugar fermentation were observed, and biomass accumulation and ethanol production depended on the nature of the nitrogen source and were different for brewing and wine strains. In maltose, high biomass production was observed under peptone and casamino acids for the brewing and wine strains, however efficient maltose utilization and high ethanol production was only observed in the presence of casamino acids for one brewing and one wine strain studied. Conversely, peptone and casamino acids induced higher biomass and ethanol production for the two other brewing and wine strains studied. With glucose, in general, peptone induced higher fermentation performance for all strains, and one brewing and wine strain produced the same amount of ethanol with peptone and casamino acids supplementation. Ammonium salts always induced poor yeast performance. The results described in this paper suggest that the complex nitrogen composition of the cultivation medium may create conditions resembling those responsible for inducing sluggish/stuck fermentation, and indicate that the kind and concentration of sugar, the complexity of nitrogen source and the yeast genetic background influence optimal industrial yeast fermentation performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An extracellular polygalacturonase was isolated from 5-day culture filtrates of Thermoascus aurantiacus CBMAI-756 and purified by gel filtration and ion-exchange chromatography. The enzyme was maximally active at pH 5.5 and 60-65 degrees C. The apparent K (m) with citrus pectin was 1.46 mg/ml and the V (max) was 2433.3 mu mol/min/mg. The apparent molecular weight of the enzyme was 30 kDa. The enzyme was 100% stable at 50 degrees C for 1 h and showed a half-life of 10 min at 60 degrees C. Polygalacturonase was stable at pH 5.0-5.5 and maintained 33% of initial activity at pH 9.0. Metal ions, such as Zn+2, Mn+2, and Hg+2, inhibited 50, 75 and 100% of enzyme activity. The purified polygalacturonase was shown to be an endo/exo-enzyme, releasing mono, di and tri-galacturonic acids within 10 min of hydrolysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maintenance of high cell viability was the main characteristic of our new strains of thermotolerant Saccharomyces. Total sugar conversion to ethanol was observed for sugarcane juice fermentation at 38-40-degrees-C in less than 10 h and without continuous aeration of the culture. Invertase activity differed among the selected strains and increased during fermentation but was not dependent on cell viability. Invertase activity of the cells and optimum temperature for growth, as well as velocity of ethanol formation, were dependent on medium composition and the type of strain used. At high sugarcane syrup concentrations, the best temperature for ethanol formation by strain 781 was 35-degrees-C. Distinct differences among the velocities of ethanol production using selected strains were also observed in sugarcane syrup at 35-38-degrees-C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New yeast strains for alcoholic fermentation were isolated from samples collected from Brazilian alcohol factories at the end of the sugar cane crop season. They were selected by their capacity of fermenting concentrated sugar cane syrup as well as high sucrose concentrations in synthetic medium with a conversion efficiency of 89-92%. The strains were identified as Saccharomyces cerevisiae.