716 resultados para RELATIVE FUZZY CONNECTEDNESS
Resumo:
Several equipments and methodologies have been developed to make available precision agriculture, especially considering the high cost of its implantation and sampling. An interesting possibility is to define management zones aim at dividing producing areas in smaller management zones that could be treated differently, serving as a source of recommendation and analysis. Thus, this trial used physical and chemical properties of soil and yield aiming at the generation of management zones in order to identify whether they can be used as recommendation and analysis. Management zones were generated by the Fuzzy C-Means algorithm and their evaluation was performed by calculating the reduction of variance and performing means tests. The division of the area into two management zones was considered appropriate for the present distinct averages of most soil properties and yield. The used methodology allowed the generation of management zones that can serve as source of recommendation and soil analysis; despite the relative efficiency has shown a reduced variance for all attributes in divisions in the three sub-regions, the ANOVA did not show significative differences among the management zones.
Resumo:
The goal of this study was to develop a fuzzy model to predict the occupancy rate of free-stalls facilities of dairy cattle, aiding to optimize the design of projects. The following input variables were defined for the development of the fuzzy system: dry bulb temperature (Tdb, °C), wet bulb temperature (Twb, °C) and black globe temperature (Tbg, °C). Based on the input variables, the fuzzy system predicts the occupancy rate (OR, %) of dairy cattle in free-stall barns. For the model validation, data collecting were conducted on the facilities of the Intensive System of Milk Production (SIPL), in the Dairy Cattle National Research Center (CNPGL) of Embrapa. The OR values, estimated by the fuzzy system, presented values of average standard deviation of 3.93%, indicating low rate of errors in the simulation. Simulated and measured results were statistically equal (P>0.05, t Test). After validating the proposed model, the average percentage of correct answers for the simulated data was 89.7%. Therefore, the fuzzy system developed for the occupancy rate prediction of free-stalls facilities for dairy cattle allowed a realistic prediction of stalls occupancy rate, allowing the planning and design of free-stall barns.
Resumo:
The present study shows the development, simulation and actual implementation of a closed-loop controller based on fuzzy logic that is able to regulate and standardize the mass flow of a helical fertilizer applicator. The control algorithm was developed using MATLAB's Fuzzy Logic Toolbox. Both open and closed-loop simulations of the controller were performed in MATLAB's Simulink environment. The instantaneous deviation of the mass flow from the set point (SP), its derivative, the equipment´s translation velocity and acceleration were all used as input signals for the controller, whereas the voltage of the applicator's DC electric motor (DCEM) was driven by the controller as output signal. Calibration and validation of the rules and membership functions of the fuzzy logic were accomplished in the computer simulation phase, taking into account the system's response to SP changes. The mass flow variation coefficient, measured in experimental tests, ranged from 6.32 to 13.18%. The steady state error fell between -0.72 and 0.13g s-1 and the recorded average rise time of the system was 0.38 s. The implemented controller was able to both damp the oscillations in mass flow that are characteristic of helical fertilizer applicators, and to effectively respond to SP variations.
Resumo:
A fuzzy ruled-based system was developed in this study and resulted in an index indicating the level of uncertainty related to commercial transactions between cassava growers and their dealers. The fuzzy system was developed based on Transaction Cost Economics approach. The fuzzy system was developed from input variables regarding information sharing between grower and dealer on “Demand/purchase Forecasting”, “Production Forecasting” and “Production Innovation”. The output variable is the level of uncertainty regarding the transaction between seller and buyer agent, which may serve as a system for detecting inefficiencies. Evidences from 27 cassava growers registered in the Regional Development Offices of Tupa and Assis, São Paulo, Brazil, and 48 of their dealers supported the development of the system. The mathematical model indicated that 55% of the growers present a Very High level of uncertainty, 33% present Medium or High. The others present Low or Very Low level of uncertainty. From the model, simulations of external interferences can be implemented in order to improve the degree of uncertainty and, thus, lower transaction costs.
Management zones using fuzzy clustering based on spatial-temporal variability of soil and corn yield
Resumo:
Clustering soil and crop data can be used as a basis for the definition of management zones because the data are grouped into clusters based on the similar interaction of these variables. Therefore, the objective of this study was to identify management zones using fuzzy c-means clustering analysis based on the spatial and temporal variability of soil attributes and corn yield. The study site (18 by 250-m in size) was located in Jaboticabal, São Paulo/Brazil. Corn yield was measured in one hundred 4.5 by 10-m cells along four parallel transects (25 observations per transect) over five growing seasons between 2001 and 2010. Soil chemical and physical attributes were measured. SAS procedure MIXED was used to identify which variable(s) most influenced the spatial variability of corn yield over the five study years. Basis saturation (BS) was the variable that better related to corn yield, thus, semivariograms models were fitted for BS and corn yield and then, data values were krigged. Management Zone Analyst software was used to carry out the fuzzy c-means clustering algorithm. The optimum number of management zones can change over time, as well as the degree of agreement between the BS and corn yield management zone maps. Thus, it is very important take into account the temporal variability of crop yield and soil attributes to delineate management zones accurately.
Resumo:
ABSTRACT Given the need to obtain systems to better control broiler production environment, we performed an experiment with broilers from 1 to 21 days, which were submitted to different intensities and air temperature durations in conditioned wind tunnels and the results were used for validation of afuzzy model. The model was developed using as input variables: duration of heat stress (days), dry bulb air temperature (°C) and as output variable: feed intake (g) weight gain (g) and feed conversion (g.g-1). The inference method used was Mamdani, 20 rules have been prepared and the defuzzification technique used was the Center of Gravity. A satisfactory efficiency in determining productive responses is evidenced in the results obtained in the model simulation, when compared with the experimental data, where R2 values calculated for feed intake, weight gain and feed conversion were 0.998, 0.981 and 0.980, respectively.
Resumo:
ABSTRACT Precision agriculture (PA) allows farmers to identify and address variations in an agriculture field. Management zones (MZs) make PA more feasible and economical. The most important method for defining MZs is a fuzzy C-means algorithm, but selecting the variable for use as the input layer in the fuzzy process is problematic. BAZZI et al. (2013) used Moran’s bivariate spatial autocorrelation statistic to identify variables that are spatially correlated with yield while employing spatial autocorrelation. BAZZI et al. (2013) proposed that all redundant variables be eliminated and that the remaining variables would be considered appropriate on the MZ generation process. Thus, the objective of this work, a study case, was to test the hypothesis that redundant variables can harm the MZ delineation process. BAZZI This work was conducted in a 19.6-ha commercial field, and 15 MZ designs were generated by a fuzzy C-means algorithm and divided into two to five classes. Each design used a different composition of variables, including copper, silt, clay, and altitude. Some combinations of these variables produced superior MZs. None of the variable combinations produced statistically better performance that the MZ generated with no redundant variables. Thus, the other redundant variables can be discredited. The design with all variables did not provide a greater separation and organization of data among MZ classes and was not recommended.
Resumo:
ABSTRACT The Body Mass Index (BMI) can be used by farmers to help determine the time of evaluation of the body mass gain of the animal. However, the calculation of this index does not reveal immediately whether the animal is ready for slaughter or if it needs special care fattening. The aim of this study was to develop a software using the Fuzzy Logic to compare the bovine body mass among themselves and identify the groups for slaughter and those that requires more intensive feeding, using "mass" and "height" variables, and the output Fuzzy BMI. For the development of the software, it was used a fuzzy system with applications in a herd of 147 Nellore cows, located in a city of Santa Rita do Pardo city – Mato Grosso do Sul (MS) state, in Brazil, and a database generated by Matlab software.
Resumo:
In this thesis, a classi cation problem in predicting credit worthiness of a customer is tackled. This is done by proposing a reliable classi cation procedure on a given data set. The aim of this thesis is to design a model that gives the best classi cation accuracy to e ectively predict bankruptcy. FRPCA techniques proposed by Yang and Wang have been preferred since they are tolerant to certain type of noise in the data. These include FRPCA1, FRPCA2 and FRPCA3 from which the best method is chosen. Two di erent approaches are used at the classi cation stage: Similarity classi er and FKNN classi er. Algorithms are tested with Australian credit card screening data set. Results obtained indicate a mean classi cation accuracy of 83.22% using FRPCA1 with similarity classi- er. The FKNN approach yields a mean classi cation accuracy of 85.93% when used with FRPCA2, making it a better method for the suitable choices of the number of nearest neighbors and fuzziness parameters. Details on the calibration of the fuzziness parameter and other parameters associated with the similarity classi er are discussed.
Resumo:
In this study, feature selection in classification based problems is highlighted. The role of feature selection methods is to select important features by discarding redundant and irrelevant features in the data set, we investigated this case by using fuzzy entropy measures. We developed fuzzy entropy based feature selection method using Yu's similarity and test this using similarity classifier. As the similarity classifier we used Yu's similarity, we tested our similarity on the real world data set which is dermatological data set. By performing feature selection based on fuzzy entropy measures before classification on our data set the empirical results were very promising, the highest classification accuracy of 98.83% was achieved when testing our similarity measure to the data set. The achieved results were then compared with some other results previously obtained using different similarity classifiers, the obtained results show better accuracy than the one achieved before. The used methods helped to reduce the dimensionality of the used data set, to speed up the computation time of a learning algorithm and therefore have simplified the classification task
Resumo:
Objective To compare the diagnostic accuracy of the classic Meisels cytologic criteria and the Schneider secondary criteria relative to the hybrid capture method for diagnosing HPV infection. Methods This was a retrospective study performed at a public university hospital. A total of 41 patients with a cytologic diagnosis of HPV infection and 40 HPV-negative patients were selected for review of the cervical-vaginal smears seeking to classical and secondary criteria. A single pathologist reviewed the slides in search of the criteria. The classical and secondary cytologic criteria were compared with the hybrid capture for diagnosing HPV infection. Bartleti test was applied for the age analysis, and Fisher's exact test was used to compare proportions. The tests were considered significant when the probability of rejecting the null hypothesis was less than 5% (p < 0.05). Results The Meisels criteria were less sensitive (34.0%) than the secondary Schneider criteria (57.5%) when compared with the hybrid capture (p < 0.0001), although the specificity of the former criteria was non-significantly higher (91.2% and 67.7%, respectively). In cases of moderate or intense inflammation, the sensitivity and specificity of the Schneider criteria were decreased, 33.3% and 50.0% respectively (p = 0.0115). Conclusions Compared with hybrid capture for diagnosis of HPV infection, the sensitivity of the secondary Schneider criteria was higher than the classical Meisels criteria.Moderate or intense inflammation reduces the sensitivity and specificity of the secondary Schneider criteria for diagnosing HPV infection using the hybrid capture as the gold standard.
Resumo:
Työssä käsitellään innovaatioprosessin ensimmäistä ”fuzzy front end” -vaihetta, jota työssä kutsutaan front end -vaiheeksi. Front end -vaihe on innovaatioprosessin alustava tutkimus ja suunnittelu vaihe ennen teknistä kehittämisvaihetta. Front end -vaihetta on tutkittu innovaatioprosessin osista vähiten, sekä se on useimmille yrityksillä sumea ja vaikeasti käsitettävä. Tutkimusten mukaan front end -vaiheen osaaminen on kuitenkin erittäin merkittävä tekijä yrityksen innovatiivisuudelle. Työssä avataan innovaatioprosessin sisältöä ja tavoitteita, sekä vertaillaan käytössä olevia malleja front end -vaiheen rakenteesta. Työssä selvitetään avaintekijöitä front end -vaiheen menestykseen ja tehokkuuteen. Lisäksi käsitellään johtamisen tekijöitä, jotka edesauttavat onnistumaan front end -vaiheessa.
Resumo:
This work deals with an hybrid PID+fuzzy logic controller applied to control the machine tool biaxial table motions. The non-linear model includes backlash and the axis elasticity. Two PID controllers do the primary table control. A third PID+fuzzy controller has a cross coupled structure whose function is to minimise the trajectory contour errors. Once with the three PID controllers tuned, the system is simulated with and without the third controller. The responses results are plotted and compared to analyse the effectiveness of this hybrid controller over the system. They show that the proposed methodology reduces the contour error in a proportion of 70:1.
Resumo:
An Autonomous Mobile Robot battery driven, with two traction wheels and a steering wheel is being developed. This Robot central control is regulated by an IPC, which controls every function of security, steering, positioning localization and driving. Each traction wheel is operated by a DC motor with independent control system. This system is made up of a chopper, an encoder and a microcomputer. The IPC transmits the velocity values and acceleration ramp references to the PIC microcontrollers. As each traction wheel control is independent, it's possible to obtain different speed values for each wheel. This process facilities the direction and drive changes. Two different strategies for speed velocity control were implemented; one works with PID, and the other with fuzzy logic. There were no changes in circuits and feedback control, except for the PIC microcontroller software. Comparing the two different speed control strategies the results were equivalent. However, in relation to the development and implementation of these strategies, the difficulties were bigger to implement the PID control.
Resumo:
This work analyzes an active fuzzy logic control system in a Rijke type pulse combustor. During the system development, a study of the existing types of control for pulse combustion was carried out and a simulation model was implemented to be used with the package Matlab and Simulink. Blocks which were not available in the simulator library were developed. A fuzzy controller was developed and its membership functions and inference rules were established. The obtained simulation showed that fuzzy logic is viable in the control of combustion instabilities. The obtained results indicated that the control system responded to pulses in an efficient and desirable way. It was verified that the system needed approximately 0.2 s to increase the tube internal pressure from 30 to 90 mbar, with an assumed total delay of 2 ms. The effects of delay variation were studied. Convergence was always obtained and general performance was not affected by the delay. The controller sends a pressure signal in phase with the Rijke tube internal pressure signal, through the speakers, when an increase the oscillations pressure amplitude is desired. On the other hand, when a decrease of the tube internal pressure amplitude is desired, the controller sends a signal 180º out of phase.