964 resultados para QUANTUM CHAINS
Resumo:
A key aspect of industrialization is theadoption of increasing-returns-to-scale, industrial,technologies. Two other, well-documented aspects arethat industrial technologies are adopted throughoutintermediate-input chains and that they use intermediateinputs intensively relative to the technologies theyreplace. These features of industrial technologiescombined imply that countries with access to similartechnologies may have very different levels ofindustrialization and income, even if the degree ofincreasing returns to scale at the firm level is relativelysmall. Furthermore, a small improvement in theproductivity of industrial technologies can trigger full-scaleindustrialization and a large increase in income.
Resumo:
A polarizable quantum mechanics and molecular mechanics model has been extended to account for the difference between the macroscopic electric field and the actual electric field felt by the solute molecule. This enables the calculation of effective microscopic properties which can be related to macroscopic susceptibilities directly comparable with experimental results. By seperating the discrete local field into two distinct contribution we define two different microscopic properties, the so-called solute and effective properties. The solute properties account for the pure solvent effects, i.e., effects even when the macroscopic electric field is zero, and the effective properties account for both the pure solvent effects and the effect from the induced dipoles in the solvent due to the macroscopic electric field. We present results for the linear and nonlinear polarizabilities of water and acetonitrile both in the gas phase and in the liquid phase. For all the properties we find that the pure solvent effect increases the properties whereas the induced electric field decreases the properties. Furthermore, we present results for the refractive index, third-harmonic generation (THG), and electric field induced second-harmonic generation (EFISH) for liquid water and acetonitrile. We find in general good agreement between the calculated and experimental results for the refractive index and the THG susceptibility. For the EFISH susceptibility, however, the difference between experiment and theory is larger since the orientational effect arising from the static electric field is not accurately described
Resumo:
The research performed a sustainability assessment of supply chains of the anchoveta (Engraulis ringens) in Peru. The corresponding fisheries lands 6.5 million t per year, of which <2% is rendered into products for direct human consumption (DHC) and 98% reduced into feed ingredients (fishmeal and fish oil, FMFO), for export. Several industries compete for the anchoveta resources, generating local and global impacts. The need for understanding these dynamics, towards sustainability-improving management and policy recommendations, determined the development of a sustainability assessment framework: 1) characterisation and modelling of the systems under study (with Life Cycle Assessment and other tools) including local aquaculture, 2) calculation of sustainability indicators (i.e. energy efficiency, nutritional value, socio-economic performances), and 3) sustainability comparison of supply chains; definition and comparison of alternative exploitation scenarios. Future exploitation scenarios were defined by combining an ecosystem and a material flow models: continuation of the status quo (Scenario 1), shift towards increased proportion of DHC production (Scenario 2), and radical reduction of the anchoveta harvest in order for other fish stocks to recover and be exploited for DHC (Scenario 3). Scenario 2 was identified as the most sustainable. Management and policy recommendations include improving of: controls for compliance with management measures, sanitary conditions for DHC, landing infrastructure for small- and medium-scale (SMS) fisheries; the development of a national refrigerated distribution chain; and the assignation of flexible tolerances for discards from different DHC processes.
Resumo:
There is no doubt about the necessity of protecting digital communication: Citizens are entrusting their most confidential and sensitive data to digital processing and communication, and so do governments, corporations, and armed forces. Digital communication networks are also an integral component of many critical infrastructures we are seriously depending on in our daily lives. Transportation services, financial services, energy grids, food production and distribution networks are only a few examples of such infrastructures. Protecting digital communication means protecting confidentiality and integrity by encrypting and authenticating its contents. But most digital communication is not secure today. Nevertheless, some of the most ardent problems could be solved with a more stringent use of current cryptographic technologies. Quite surprisingly, a new cryptographic primitive emerges from the ap-plication of quantum mechanics to information and communication theory: Quantum Key Distribution. QKD is difficult to understand, it is complex, technically challenging, and costly-yet it enables two parties to share a secret key for use in any subsequent cryptographic task, with an unprecedented long-term security. It is disputed, whether technically and economically fea-sible applications can be found. Our vision is, that despite technical difficulty and inherent limitations, Quantum Key Distribution has a great potential and fits well with other cryptographic primitives, enabling the development of highly secure new applications and services. In this thesis we take a structured approach to analyze the practical applicability of QKD and display several use cases of different complexity, for which it can be a technology of choice, either because of its unique forward security features, or because of its practicability.
Resumo:
The competitiveness of businesses is increasingly dependent on their electronic networks with customers, suppliers, and partners. While the strategic and operational impact of external integration and IOS adoption has been extensively studied, much less attention has been paid to the organizational and technical design of electronic relationships. The objective of our longitudinal research project is the development of a framework for understanding and explaining B2B integration. Drawing on existing literature and empirical cases we present a reference model (a classification scheme for B2B Integration). The reference model comprises technical, organizational, and institutional levels to reflect the multiple facets of B2B integration. In this paper we onvestigate the current state of electronic collaboration in global supply chains focussing on the technical view. Using an indepth case analysis we identify five integration scenarios. In the subsequent confirmatory phase of the research we analyse 112 real-world company cases to validate these five integration scenarios. Our research advances and deepens existing studies by developing a B2B reference model, which reflects the current state of practice and is independent of specific implementation technologies. In the next stage of the research the emerging reference model will be extended to create an assessment model for analysing the maturity level of a given company in a specific supply chain.
Resumo:
Biofuels are considered as a promising substitute for fossil fuels when considering the possible reduction of greenhouse gases emissions. However limiting their impacts on potential benefits for reducing climate change is shortsighted. Global sustainability assessments are necessary to determine the sustainability of supply chains. We propose a new global criterion based framework enabling a comprehensive international comparison of bioethanol supply chains. The interest of this framework is that the selection of the sustainability indicators is qualified on three criterions: relevance, reliability and adaptability to the local context. Sustainability issues have been handled along environmental, social and economical issues. This new framework has been applied for a specific issue: from a Swiss perspective, is locally produced bioethanol in Switzerland more sustainable than imported from Brazil? Thanks to this framework integrating local context in its indicator definition, Brazilian production of bioethanol is shown as energy efficient and economically interesting for Brazil. From a strictly economic point of view, bioethanol production within Switzerland is not justified for Swiss consumption and questionable for the environmental issue. The social dimension is delicate to assess due to the lack of reliable data and is strongly linked to the agricultural policy in both countries. There is a need of establishing minimum sustainability criteria for imported bioethanol to avoid unwanted negative or leakage effects.
Resumo:
In this work a new admittance spectroscopy technique is proposed to determine the conduction band offset in single quantum well structures (SQW). The proposed technique is based on the study of the capacitance derivative versus the frequency logarithm. This method is found to be less sensitive to parasitic effects, such as leakage current and series resistance, than the classical conductance analysis. Using this technique, we have determined the conduction band offset in In0.52Al0.48As/InxGa1¿xAs/In0.52Al0.48As SQW structures. Two different well compositions, x=0.53, which corresponds to the lattice¿matched case and x=0.60, which corresponds to a strained case, and two well widths (5 and 25 nm) have been considered. The average results are ¿Ec=0.49±0.04 eV for x=0.53 and ¿Ec =0.51±0.04 eV for x=0.6, which are in good agreement with previous reported data.
Electrical transport quantum effects in the In0.53Ga0.47As/In0.52Al0.48As heterostructure on silicon
Resumo:
Electrical transport in a modulation doped heterostructure of In0.53Ga0.47As/In0.52Al0.48As grown on Si by molecular beam epitaxy has been measured. Quantum Hall effect and Subnikov¿De Haas oscillations were observed indicating the two¿dimensional character of electron transport. A mobility of 20¿000 cm2/V¿s was measured at 6 K for an electron sheet concentration of 1.7×1012 cm¿2. Transmission electron microscopy observations indicated a significant surface roughness and high defect density of the InGaAs/InAlAs layers to be present due to the growth on silicon. In addition, fine¿scale composition modulation present in the In0.53Ga0.47As/In0.52Al0.48As may further limit transport properties.
Resumo:
In this paper we present the Raman scattering of self-assembled InSb dots grown on (001) oriented InP substrates. The samples were grown by pulsed molecular beam epitaxy mode. Two types of samples have been investigated. In one type the InSb dots were capped with 200 monolayers of InP; in the other type no capping was deposited after the InSb dot formation. We observe two peaks in the Raman spectra of the uncapped dot, while only one peak is observed in the Raman spectra of the capped dots. In the case of the uncapped dots the peaks are attributed to LO-like and TO-like vibration of completely relaxed InSb dots, in agreement with high resolution transmission electron microscopy photographs. The Raman spectra of the capped dot suggest a different strain state in the dot due to the capping layer.
Resumo:
We show how to decompose any density matrix of the simplest binary composite systems, whether separable or not, in terms of only product vectors. We determine for all cases the minimal number of product vectors needed for such a decomposition. Separable states correspond to mixing from one to four pure product states. Inseparable states can be described as pseudomixtures of four or five pure product states, and can be made separable by mixing them with one or two pure product states.
Resumo:
The symmetrical two-dimensional quantum wire with two straight leads joined to an arbitrarily shaped interior cavity is studied with emphasis on the single-mode approximation. It is found that for both transmission and bound-state problems the solution is equivalent to that for an energy-dependent one-dimensional square well. Quantum wires with a circular bend, and with single and double right-angle bends, are examined as examples. We also indicate a possible way to detect bound states in a double bend based on the experimental setup of Wu et al.
Resumo:
Systematic trends in the properties of a linear split-gate heterojunction are studied by solving iteratively the Poisson and Schrödinger equations for different gate potentials and temperatures. A two-dimensional approximation is presented that is much simpler in the numerical implementation and that accurately reproduces all significant trends. In deriving this approximation, we provide a rigorous and quantitative basis for the formulation of models that assumes a two-dimensional character for the electron gas at the junction.
Resumo:
Within current-density-functional theory, we have studied a quantum dot made of 210 electrons confined in a disk geometry. The ground state of this large dot exhibits some features as a function of the magnetic field (Beta) that can be attributed in a clear way to the formation of compressible and incompressible states of the system. The orbital and spin angular momenta, the total energy, ionization and electron chemical potentials of the ground state, as well as the frequencies of far-infrared edge modes are calculated as a function of Beta, and compared with available experimental and theoretical results.