553 resultados para Pyruvate formiate lyase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the present study was to investigate the participation of the sympathetic nervous system (SNS) in the control of glycerol-3-P (G3P) generating pathways in white adipose tissue (WAT) of rats in three situations in which the plasma insulin levels are low. WAT from 48 h fasted animals, 3 day-streptozotocin diabetic animals and high-protein, carbohydrate-free (HP) diet-fed rats was surgical denervated and the G3P generation pathways were evaluated. Food deprivation, diabetes and the HP diet provoke a marked decrease in the rate of glucose uptake and glycerokinase (GyK) activity, but a significant increase in the glyceroneogenesis, estimated by the phosphoenolpyruvate carboxykinase (PEPCK) activity and the incorporation of 1-[C-14]-pyruvate into glycerol-TAG. The denervation provokes a reduction (similar to 70%) in the NE content of WAT in fasted, diabetic and HP diet-fed rats. The denervation induced an increase in WAT glucose uptake of fed, fasted, diabetic and HP diet-fed rats (40%, 60%, 3.2 fold and 35%, respectively). TAG-glycerol synthesis from pyruvate was reduced by denervation in adipocytes of fed (58%) and fasted (36%), saline-treated (58%) and diabetic (23%), and HP diet-fed rats (11%). In these same groups the denervation reduced the PEPCK mRNA expression (75%-95%) and the PEPCK activity (35%-60%). The denervation caused a similar to 35% decrease in GyK activity of control rats and a further similar to 35% reduction in the already low enzyme activity of fasted, diabetic and HP diet-fed rats. These data suggest that the SNS plays an important role in modulating G3P generating pathways in WAT, in situations where insulin levels are low. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The genus Colletotrichum is one of the most economically important plant pathogens, causing anthracnose on a wide range of crops including common beans (Phaseolus vulgaris L.). Crop yield can be dramatically decreased depending on the plant cultivar used and the environmental conditions. This study aimed to identify potential genetic components of the bean immune system to provide environmentally friendly control measures against this fungus. Methodology and Principal Findings: As the common bean is not amenable to reverse genetics to explore functionality and its genome is not fully curated, we used putative Arabidopsis orthologs of bean expressed sequence tag (EST) to perform bioinformatic analysis and experimental validation of gene expression to identify common bean genes regulated during the incompatible interaction with C. lindemuthianum. Similar to model pathosystems, Gene Ontology (GO) analysis indicated that hormone biosynthesis and signaling in common beans seem to be modulated by fungus infection. For instance, cytokinin and ethylene responses were up-regulated and jasmonic acid, gibberellin, and abscisic acid responses were down-regulated, indicating that these hormones may play a central role in this pathosystem. Importantly, we have identified putative bean gene orthologs of Arabidopsis genes involved in the plant immune system. Based on experimental validation of gene expression, we propose that hypersensitive reaction as part of effector-triggered immunity may operate, at least in part, by down-regulating genes, such as FLS2-like and MKK5-like, putative orthologs of the Arabidopsis genes involved in pathogen perception and downstream signaling. Conclusions/Significance: We have identified specific bean genes and uncovered metabolic processes and pathways that may be involved in the immune response against pathogens. Our transcriptome database is a rich resource for mining novel defense-related genes, which enabled us to develop a model of the molecular components of the bean innate immune system regulated upon pathogen attack.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this work was to identify genes that could be used as suitable markers for molecular recognition of phenological stages during coffee (Coffea arabica) fruit development. Four cultivars were evaluated as to their differential expression of genes associated to fruit development and maturation processes. Gene expression was characterized by both semi-quantitative and quantitative RT-PCR, in fruit harvested at seven different developmental stages, during three different seasons. No size polymorphisms or differential expression were observed among the cultivars for the evaluated genes; however, distinct expression profiles along fruit development were determined for each gene. Four out of the 28 evaluated genes exhibited a regular expression profile in all cultivars and harvest seasons, and, therefore, they were validated as candidate phenological markers of coffee fruit. The gene a-galactosidase can be used as a marker of green stage, caffeine synthase as a marker of transition to green and yellowish-green stages, and isocitrate lyase and ethylene receptor 3 as markers of late maturation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among trypanosomatids, the genus Phytomonas is the only one specifically adapted to infect plants. These hosts provide a particular habitat with a plentiful supply of carbohydrates. Phytomonas sp. lacks a cytochrome-mediated respiratory chain and Krebs cycle, and ATP production relies predominantly on glycolysis. We have characterised the complete gene encoding a putative pyruvate/indolepyruvate decarboxylase (PDC/IPDC) (548 amino acids) of P. serpens, that displays high amino acid sequence similarity with phytobacteria and Leishmania enzymes. No orthologous PDC/IPDC genes were found in Trypanosoma cruzi or T. brucei. Conservation of the PDC/IPDC gene sequence was verified in 14 Phytomonas isolates. A phylogenetic analysis shows that Phytomonas protein is robustly monophyletic with Leishmania spp. and C. fasciculata enzymes. In the trees this clade appears as a sister group of indolepyruvate decarboxylases of gamma-proteobacteria. This supports the proposition that a horizontal gene transfer event from a donor phytobacteria to a recipient ancestral trypanosome has occurred prior to the separation between Phytomonas. Leishmania and Crithidia. We have measured the PDC activity in P. serpens cell extracts. The enzyme has a Km value for pyruvate of 1.4 mM. The acquisition of a PDC, a key enzyme in alcoholic fermentation, explains earlier observations that ethanol is one of the major end-products of glucose catabolism under aerobic and anaerobic conditions. This represents an alternative and necessary route to reoxidise part of the NADH produced in the highly demanding glycolytic pathway and highlights the importance of this type of event in metabolic adaptation. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Isoprene is emitted from many terrestrial plants at high rates, accounting for an estimated 1/3 of annual global volatile organic compound emissions from all anthropogenic and biogenic sources combined. Through rapid photooxidation reactions in the atmosphere, isoprene is converted to a variety of oxidized hydrocarbons, providing higher order reactants for the production of organic nitrates and tropospheric ozone, reducing the availability of oxidants for the breakdown of radiatively active trace gases such as methane, and potentially producing hygroscopic particles that act as effective cloud condensation nuclei. However, the functional basis for plant production of isoprene remains elusive. It has been hypothesized that in the cell isoprene mitigates oxidative damage during the stress-induced accumulation of reactive oxygen species (ROS), but the products of isoprene-ROS reactions in plants have not been detected. Using pyruvate-2-13C leaf and branch feeding and individual branch and whole mesocosm flux studies, we present evidence that isoprene (i) is oxidized to methyl vinyl ketone and methacrolein (iox) in leaves and that iox/i emission ratios increase with temperature, possibly due to an increase in ROS production under high temperature and light stress. In a primary rainforest in Amazonia, we inferred significant in plant isoprene oxidation (despite the strong masking effect of simultaneous atmospheric oxidation), from its influence on the vertical distribution of iox uptake fluxes, which were shifted to low isoprene emitting regions of the canopy. These observations suggest that carbon investment in isoprene production is larger than that inferred from emissions alone and that models of tropospheric chemistry and biotachemistryclimate interactions should incorporate isoprene oxidation within both the biosphere and the atmosphere with potential implications for better understanding both the oxidizing power of the troposphere and forest response to climate change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Shift work was recently described as a factor that increases the risk of Type 2 diabetes mellitus. In addition, rats born to mothers subjected to a phase shift throughout pregnancy are glucose intolerant. However, the mechanism by which a phase shift transmits metabolic information to the offspring has not been determined. Among several endocrine secretions, phase shifts in the light/dark cycle were described as altering the circadian profile of melatonin production by the pineal gland. The present study addresses the importance of maternal melatonin for the metabolic programming of the offspring. Methodology/Principal Findings: Female Wistar rats were submitted to SHAM surgery or pinealectomy (PINX). The PINX rats were divided into two groups and received either melatonin (PM) or vehicle. The SHAM, the PINX vehicle and the PM females were housed with male Wistar rats. Rats were allowed to mate and after weaning, the male and female offspring were subjected to a glucose tolerance test (GTT), a pyruvate tolerance test (PTT) and an insulin tolerance test (ITT). Pancreatic islets were isolated for insulin secretion, and insulin signaling was assessed in the liver and in the skeletal muscle by western blots. We found that male and female rats born to PINX mothers display glucose intolerance at the end of the light phase of the light/dark cycle, but not at the beginning. We further demonstrate that impaired glucose-stimulated insulin secretion and hepatic insulin resistance are mechanisms that may contribute to glucose intolerance in the offspring of PINX mothers. The metabolic programming described here occurs due to an absence of maternal melatonin because the offspring born to PINX mothers treated with melatonin were not glucose intolerant. Conclusions/Significance: The present results support the novel concept that maternal melatonin is responsible for the programming of the daily pattern of energy metabolism in their offspring.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Kallikrein-Kinin System (KKS) has been implicated in several aspects of metabolism, including the regulation of glucose homeostasis and adiposity. Kinins and des-Arg-kinins are the major effectors of this system and promote their effects by binding to two different receptors, the kinin B2 and B1 receptors, respectively. To understand the influence of the KKS on the pathophysiology of obesity and type 2 diabetes (T2DM), we generated an animal model deficient for both kinin receptor genes and leptin (obB1B2KO). Six-month-old obB1B2KO mice showed increased blood glucose levels. Isolated islets of the transgenic animals were more responsive to glucose stimulation releasing greater amounts of insulin, mainly in 3-month-old mice, which was corroborated by elevated serum C-peptide concentrations. Furthermore, they presented hepatomegaly, pronounced steatosis, and increased levels of circulating transaminases. This mouse also demonstrated exacerbated gluconeogenesis during the pyruvate challenge test. The hepatic abnormalities were accompanied by changes in the gene expression of factors linked to glucose and lipid metabolisms in the liver. Thus, we conclude that kinin receptors are important for modulation of insulin secretion and for the preservation of normal glucose levels and hepatic functions in obese mice, suggesting a protective role of the KKS regarding complications associated with obesity and T2DM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metabolic studies are very important to improve quality of functional dairy products. For this purpose, the behaviors of pure cultures of Streptococcus thermophilus (St) and Lactobacillus rhamnosus (Lr) as well a co-culture of them (St-Lr) were investigated during skim milk fermentation, and the inulin effect as prebiotic was assessed. Lr was able to metabolize 6 g/100 g more galactose than St and St-Lr. Final lactic acid production by Lr was higher (9.8 g/L) compared to St (9.1 g/L) and St-Lr (9.1 g/L). Acetic acid concentration varied from 0.8 g/L (St-Lr) to 1.5 g/L (Lr) and that of ethanol from only 0.2 g/L (St-Lr) to 0.4 g/L (Lr), which suggests the occurrence in Lr of a NADH oxidase activity and citrate co-metabolization via pyruvate, both dissipating a part of the reducing power. Diacetyl and acetoin accumulated at the highest levels (18.4 and 0.8 mg/L, respectively) with St-Lr, which suggests possible synergistic interactions between these microorganisms as well as the Lr capability of co-metabolizing citrate in the presence of lactose. Inulin stimulated both biomass growth and levels of all end-products, as the likely result of fructose release from its partial hydrolysis and subsequent metabolization as an additional carbon and energy source. Crown Copyright (C) 2012 Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bananas (Musa spp.) are highly perishable fruit of notable economic and nutritional relevance. Because the identification of proteins involved in metabolic pathways could help to extend green-life and improve the quality of the fruit, this study aimed to compare the proteins of banana pulp at the pre-climacteric and climacteric stages. The use of two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) revealed 50 differentially expressed proteins, and comparing those proteins to the Mass Spectrometry Protein Sequence Database (MSDB) identified 26 known proteins. Chitinases were the most abundant types of proteins in unripe bananas, and two isoforms in the ripe fruit have been implicated in the stress/defense response. In this regard, three heat shock proteins and isoflavone reductase were also abundant at the climacteric stage. Concerning fruit quality, pectate lyase, malate dehydrogenase, and starch phosphorylase accumulated during ripening. In addition to the ethylene formation enzyme amino cyclo carboxylic acid oxidase, the accumulation of S-adenosyl-L-homocysteine hydrolase was needed because of the increased ethylene synthesis and DNA methylation that occurred in ripening bananas. Differential analysis provided information on the ripening-associated changes that occurred in proteins involved in banana flavor, texture, defense, synthesis of ethylene, regulation of expression, and protein folding, and this analysis validated previous data on the transcripts during ripening. In this regard, the differential proteomics of fruit pulp enlarged our understanding of the process of banana ripening. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eighteen aerobic endospore forming strains were isolated from sugarcane rhizosphere in N-free medium. A phenotypic description and analysis of the 5' end hypervariable region sequences of 16S rRNA revealed a high diversity of Bacillus and related genera. Isolates were identified, and four genera were obtained: seven strains belonged to Bacillus (Bacillaceae family), four belonged to Paenibacillus, six belonged to Brevibacillus and one strain was identified as Cohnella (Paenibacillaceae family). Four Brevibacillus strains showed in vitro inhibitory activity against plant pathogens fungi Curvularia and Fusarium. Seventy-four percent of the isolated bacteria grew on pectin as the only carbon source, showing polygalacturonase activity. Pectate lyase activity was detected for the first time in a Brevibacillus genus strain. All isolates showed endoglucanase activity. Calcium phosphate solubilisation was positive in 83.3% of the isolates, with higher values than those reported for Bacillus inorganic phosphate solubilising strains. High ethylene plant hormone secretion in the culture medium was detected in 22% of the bacteria. This is the first report of ethylene secretion in Paenibacillaceae isolates. Indole-3-acetic acid production was found in a Brevibacillus genus isolate. It was reported for the first time the presence of Cohnella genus strain on sugarcane rhizosphere bearing plant growth promoting traits. The sugarcane isolate Brevibacillus B65 was identified as a plant growth inoculant because it showed wider spectra of plant stimulation capabilities, including an antifungal effect, extracellular hydrolases secretion, inorganic phosphate solubilisation and plant hormone liberation. In this work, sugarcane was shown to be a suitable niche for finding aerobic endospore forming 'Bacilli' with agriculture biotechnological purposes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background Citrus bacterial canker is a disease that has severe economic impact on citrus industries worldwide and is caused by a few species and pathotypes of Xanthomonas. X. citri subsp. citri strain 306 (XccA306) is a type A (Asiatic) strain with a wide host range, whereas its variant X. citri subsp. citri strain Aw12879 (Xcaw12879, Wellington strain) is restricted to Mexican lime. Results To characterize the mechanism for the differences in host range of XccA and Xcaw, the genome of Xcaw12879 that was completed recently was compared with XccA306 genome. Effectors xopAF and avrGf1 are present in Xcaw12879, but were absent in XccA306. AvrGf1 was shown previously for Xcaw to cause hypersensitive response in Duncan grapefruit. Mutation analysis of xopAF indicates that the gene contributes to Xcaw growth in Mexican lime but does not contribute to the limited host range of Xcaw. RNA-Seq analysis was conducted to compare the expression profiles of Xcaw12879 and XccA306 in Nutrient Broth (NB) medium and XVM2 medium, which induces hrp gene expression. Two hundred ninety two and 281 genes showed differential expression in XVM2 compared to in NB for XccA306 and Xcaw12879, respectively. Twenty-five type 3 secretion system genes were up-regulated in XVM2 for both XccA and Xcaw. Among the 4,370 common genes of Xcaw12879 compared to XccA306, 603 genes in NB and 450 genes in XVM2 conditions were differentially regulated. Xcaw12879 showed higher protease activity than XccA306 whereas Xcaw12879 showed lower pectate lyase activity in comparison to XccA306. Conclusions Comparative genomic analysis of XccA306 and Xcaw12879 identified strain specific genes. Our study indicated that AvrGf1 contributes to the host range limitation of Xcaw12879 whereas XopAF contributes to virulence. Transcriptome analyses of XccA306 and Xcaw12879 presented insights into the expression of the two closely related strains of X. citri subsp. citri. Virulence genes including genes encoding T3SS components and effectors are induced in XVM2 medium. Numerous genes with differential expression in Xcaw12879 and XccA306 were identified. This study provided the foundation to further characterize the mechanisms for virulence and host range of pathotypes of X. citri subsp. citri.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Melatonin can contribute to glucose homeostasis either by decreasing gluconeogenesis or by counteracting insulin resistance in distinct models of obesity. However, the precise mechanism through which melatonin controls glucose homeostasis is not completely understood. Male Wistar rats were administered an intracerebroventricular (icv) injection of melatonin and one of following: an icv injection of a phosphatidylinositol 3-kinase (PI3K) inhibitor, an icv injection of a melatonin receptor (MT) antagonist, or an intraperitoneal (ip) injection of a muscarinic receptor antagonist. Anesthetized rats were subjected to pyruvate tolerance test to estimate in vivo glucose clearance after pyruvate load and in situ liver perfusion to assess hepatic gluconeogenesis. The hypothalamus was removed to determine Akt phosphorylation. Melatonin injections in the central nervous system suppressed hepatic gluconeogenesis and increased hypothalamic Akt phosphorylation. These effects of melatonin were suppressed either by icv injections of PI3K inhibitors and MT antagonists and by ip injection of a muscarinic receptor antagonist. We conclude that melatonin activates hypothalamus-liver communication that may contribute to circadian adjustments of gluconeogenesis. These data further suggest a physiopathological relationship between the circadian disruptions in metabolism and reduced levels of melatonin found in type 2 diabetes patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to investigate the impact of elevated tissue omega-3 (n-3) polyunsaturated fatty acids (PUFA) status on age-related glucose intolerance utilizing the fat-1 transgenic mouse model, which can endogenously synthesize n-3 PUFA from omega-6 (n-6) PUFA. Fat-1 and wild-type mice, maintained on the same dietary regime of a 10% corn oil diet, were tested at two different ages (2months old and 8months old) for various glucose homeostasis parameters and related gene expression. The older wild-type mice exhibited significantly increased levels of blood insulin, fasting blood glucose, liver triglycerides, and glucose intolerance, compared to the younger mice, indicating an age-related impairment of glucose homeostasis. In contrast, these age-related changes in glucose metabolism were largely prevented in the older fat-1 mice. Compared to the older wild-type mice, the older fat-1 mice also displayed a lower capacity for gluconeogenesis, as measured by pyruvate tolerance testing (PTT) and hepatic gene expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6 phosphatase (G6Pase). Furthermore, the older fat-1 mice showed a significant decrease in body weight, epididymal fat mass, inflammatory activity (NFκ-B and p-IκB expression), and hepatic lipogenesis (acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) expression), as well as increased peroxisomal activity (70-kDa peroxisomal membrane protein (PMP70) and acyl-CoA oxidase1 (ACOX1) expression). Altogether, the older fat-1 mice exhibit improved glucose homeostasis in comparison to the older wild-type mice. These findings support the beneficial effects of elevated tissue n-3 fatty acid status in the prevention and treatment of age-related chronic metabolic diseases

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective To compare autoantibody features in patients with primary biliary cirrhosis (PBC) and individuals presenting antimitochondria antibodies (AMAs) but no clinical or biochemical evidence of disease. Methods A total of 212 AMA-positive serum samples were classified into four groups: PBC (definite PBC, n = 93); PBC/autoimmune disease (AID; PBC plus other AID, n = 37); biochemically normal (BN) individuals (n = 61); and BN/AID (BN plus other AID, n = 21). Samples were tested by indirect immunofluorescence (IIF) on rat kidney (IIF-AMA) and ELISA [antibodies to pyruvate dehydrogenase E2-complex (PDC-E2), gp-210, Sp-100, and CENP-A/B]. AMA isotype was determined by IIF-AMA. Affinity of anti-PDC-E2 IgG was determined by 8 M urea-modified ELISA. Results High-titer IIF-AMA was more frequent in PBC and PBC/AID (57 and 70 %) than in BN and BN/AID samples (23 and 19 %) (p < 0.001). Triple isotype IIF-AMA (IgA/IgM/IgG) was more frequent in PBC and PBC/AID samples (35 and 43 %) than in BN sample (18 %; p = 0.008; p = 0.013, respectively). Anti-PDC-E2 levels were higher in PBC (mean 3.82; 95 % CI 3.36–4.29) and PBC/AID samples (3.89; 3.15–4.63) than in BN (2.43; 1.92–2.94) and BN/AID samples (2.52; 1.54–3.50) (p < 0.001). Anti-PDC-E2 avidity was higher in PBC (mean 64.5 %; 95 % CI 57.5–71.5 %) and PBC/AID samples (66.1 %; 54.4–77.8 %) than in BN samples (39.2 %; 30.9–37.5 %) (p < 0.001). PBC and PBC/AID recognized more cell domains (mitochondria, nuclear envelope, PML/sp-100 bodies, centromere) than BN (p = 0.008) and BN/AID samples (p = 0.002). Three variables were independently associated with established PBC: high-avidity anti-PDC-E2 (OR 4.121; 95 % CI 2.118–8.019); high-titer IIF-AMA (OR 4.890; 2.319–10.314); antibodies to three or more antigenic cell domains (OR 9.414; 1.924–46.060). Conclusion The autoantibody profile was quantitatively and qualitatively more robust in definite PBC as compared with AMA-positive biochemically normal individuals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[EN] Chronic hypoxia has been proposed to induce a closer coupling in human skeletal muscle between ATP utilization and production in both lowlanders (LN) acclimatizing to high altitude and high-altitude natives (HAN), linked with an improved match between pyruvate availability and its use in mitochondrial respiration. This should result in less lactate being formed during exercise in spite of the hypoxaemia. To test this hypothesis six LN (22-31 years old) were studied during 15 min warm up followed by an incremental bicycle exercise to exhaustion at sea level, during acute hypoxia and after 2 and 8 weeks at 4100 m above sea level (El Alto, Bolivia). In addition, eight HAN (26-37 years old) were studied with a similar exercise protocol at altitude. The leg net lactate release, and the arterial and muscle lactate concentrations were elevated during the exercise in LN in acute hypoxia and remained at this higher level during the acclimatization period. HAN had similar high values; however, at the moment of exhaustion their muscle lactate, ADP and IMP content and Cr/PCr ratio were higher than in LN. In conclusion, sea-level residents in the course of acclimatization to high altitude did not exhibit a reduced capacity for the active muscle to produce lactate. Thus, the lactate paradox concept could not be demonstrated. High-altitude natives from the Andes actually exhibit a higher anaerobic energy production than lowlanders after 8 weeks of acclimatization reflected by an increased muscle lactate accumulation and enhanced adenine nucleotide breakdown.