925 resultados para Pulmonary stretch receptors
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated nuclear transcription factors that belong to the nuclear receptor superfamily. Three isoforms of PPAR have been identified, alpha, delta and gamma, which play distinct roles in the regulation of key metabolic processes, such as glucose and lipid redistribution. PPARalpha is expressed predominantly in the liver, kidney and heart, and is primarily involved in fatty acid oxidation. PPARgamma is mainly associated with adipose tissue, where it controls adipocyte differentiation and insulin sensitivity. PPARdelta is abundantly and ubiquitously expressed, but as yet its function has not been clearly defined. Activators of PPARalpha (fibrates) and gamma (thiazolidinediones) have been used clinically for a number of years in the treatment of hyperlipidaemia and to improve insulin sensitivity in diabetes. More recently, PPAR activation has been found to confer additional benefits on endothelial function, inflammation and thrombosis, suggesting that PPAR agonists may be good candidates for the treatment of cardiovascular disease. In this regard, it has been demonstrated that PPAR activators are capable of reducing blood pressure and attenuating the development of atherosclerosis and cardiac hypertrophy. This review will provide a detailed discussion of the current understanding of basic PPAR physiology, with particular reference to the cardiovascular system. It will also examine the evidence supporting the involvement of the different PPAR isoforms in cardiovascular disease and discuss the current and potential future clinical applications of PPAR activators.
Resumo:
Recent experimental evidence has challenged the paradigm according to which radiation traversal through the nucleus of a cell is a prerequisite for producing genetic changes or biological responses. Thus, unexposed cells in the vicinity of directly irradiated cells or recipient cells of medium from irradiated cultures can also be affected. The aim of the present study was to evaluate, by means of the medium transfer technique, whether interleukin-8 and its receptor (CXCR1) may play a role in the bystander effect after gamma irradiation of T98G cells in vitro. In fact the cell specificity in inducing the bystander effect and in receiving the secreted signals that has been described suggests that not only the ability to release the cytokines but also the receptor profiles are likely to modulate the cell responses and the final outcome. The dose and time dependence of the cytokine release into the medium, quantified using an enzyme linked immunosorbent assay, showed that radiation causes alteration in the release of interleukin-8 from exposed cells in a dose-independent but time-dependent manner. The relative receptor expression was also affected in exposed and bystander cells.
Resumo:
Purpose The purpose of this study was to investigate if pepsin measured in sputum is a useful marker of pulmonary aspiration secondary to gastroesophageal reflux (GER) in children. It is possible that the induced sputum procedure could cause GER and invalidate the results. The hypothesis stated that healthy children (those without history of respiratory or gastroesophageal symptoms) would not have pepsin detected in induced sputum. Methods Children attending surgical outpatients in the Royal Belfast Hospital for Sick Children (Belfast, Northern Ireland) were recruited. After spirometry, sputum was obtained by induction with hypertonic 3% saline. Spirometry was repeated, and complications were noted. An “in-house” enzyme-linked immunosorbent assay was used to measure pepsin concentration in sputum. The lower limit of detection of pepsin was 1.19 ng/mL. Results Children (n = 21) aged 4 to 16 years were recruited. Twenty children completed the study. No adverse effects were reported. Pepsin was detected in 17 (85%) of 20 sputum samples. Conclusions The act of sputum induction appears to induce physiologic GER in a healthy childhood population. The analysis of pepsin in sputum obtained by sputum induction is therefore not useful in the investigation of reflux-related respiratory disease.
Resumo:
PURPOSE: We describe key components of normal and aberrant death receptor pathways, the association of these abnormalities with tumorigenesis in bladder, prostate and renal cancer, and their potential application in novel therapeutic strategies targeted toward patients with cancer.
MATERIALS AND METHODS: A MEDLINE literature search of the key words death receptors, TRAIL (tumor necrosis factor related apoptosis inducing ligand), FAS, bladder, prostate, renal and cancer was done to obtain information for review. A brief overview of the TRAIL and FAS death receptor pathways, and their relationship to apoptosis is described. Mechanisms that lead to nonfunction of these pathways and how they may contribute to tumorigenesis are linked. Current efforts to target death receptor pathways as a therapeutic strategy are highlighted.
RESULTS: Activation of tumor cell expressing death receptors by cytotoxic immune cells is the main mechanism by which the immune system eliminates malignant cells. Death receptor triggering induces a caspase cascade, leading to tumor cell apoptosis. Receptor gene mutation or hypermethylation, decoy receptor or splice variant over expression, and downstream inhibitor interference are examples of the ways that normal pathway functioning is lost in cancers of the bladder and prostate. Targeting death receptors directly through synthetic ligand administration and blocking downstream inhibitor molecules with siRNA or antisense oligonucleotides represent novel therapeutic strategies under development.
CONCLUSIONS: Research into the death receptor pathways has demonstrated the key role that pathway aberrations have in the initiation and progression of malignancies of the bladder, prostate and kidney. This new understanding has resulted in exciting approaches to restore the functionality of these pathways as a novel therapeutic strategy.
Resumo:
Background: Hypercapnic acidosis exerts protective effects in acute lung injury but may also slow cellular repair. These effects may be mediated via inhibition of nuclear factor-kappa B (NF-kappa B), a pivotal transcriptional regulator in inflammation and repair.
Resumo:
Background and aim: Aberrant angiogenesis and defective epithelial repair are key features of idiopathic pulmonary fibrosis (IPF). Endostatin is an antiangiogenic peptide with known effects on endothelial cells. This study aimed to establish the levels of endostatin in the bronchoalveolar lavage fluid (BALF) in IPF and to investigate its actions on distal lung epithelial cells (DLEC) and primary type II cells.
Resumo:
RATIONALE:
Simvastatin inhibits inflammatory responses in vitro and in murine models of lung inflammation in vivo. As simvastatin modulates a number of the underlying processes described in acute lung injury (ALI), it may be a potential therapeutic option.
OBJECTIVES:
To investigate in vivo if simvastatin modulates mechanisms important in the development of ALI in a model of acute lung inflammation induced by inhalation of lipopolysaccharide (LPS) in healthy human volunteers.
METHODS:
Thirty healthy subjects were enrolled in a double-blind, placebo-controlled study. Subjects were randomized to receive 40 mg or 80 mg of simvastatin or placebo (n = 10/group) for 4 days before inhalation of 50 microg LPS. Measurements were performed in bronchoalveolar lavage fluid (BALF) obtained at 6 hours and plasma obtained at 24 hours after LPS challenge. Nuclear translocation of nuclear factor-kappaB (NF-kappaB) was measured in monocyte-derived macrophages.
MEASUREMENTS AND MAIN RESULTS:
Pretreatment with simvastatin reduced LPS-induced BALF neutrophilia, myeloperoxidase, tumor necrosis factor-alpha, matrix metalloproteinases 7, 8, and 9, and C-reactive protein (CRP) as well as plasma CRP (all P < 0.05 vs. placebo). There was no significant difference between simvastatin 40 mg and 80 mg. BALF from subjects post-LPS inhalation induced a threefold up-regulation in nuclear NF-kappaB in monocyte-derived macrophages (P < 0.001); pretreatment with simvastatin reduced this by 35% (P < 0.001).
CONCLUSIONS:
Simvastatin has antiinflammatory effects in the pulmonary and systemic compartment in humans exposed to inhaled LPS.
Resumo:
Background: Smoking cessation is the primary disease modifying intervention for chronic obstructive pulmonary disease (COPD).