660 resultados para Plasmodium malariae


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cysteine proteases mediate liberation of Plasmodium berghei merozoites from infected hepatocytes. In an attempt to identify the responsible parasite proteases, we screened the genome of P. berghei for cysteine protease-encoding genes. RT-PCR analyses revealed that transcription of four out of five P. berghei serine repeat antigen (PbSERA) genes was strongly upregulated in late liver stages briefly before the parasitophorous vacuole membrane ruptured to release merozoites into the host cell cytoplasm, suggesting a role of PbSERA proteases in these processes. In order to characterize PbSERA3 processing, we raised an antiserum against a non-conserved region of the protein and generated a transgenic P. berghei strain expressing a TAP-tagged PbSERA3 under the control of the endogenous promoter. Immunofluorescence assays revealed that PbSERA3 leaks into the host cell cytoplasm during merozoite development, where it might contribute to host cell death or activate host cell proteases that execute cell death. Importantly, processed PbSERA3 has been detected by Western blot analysis in cell extracts of schizont-infected cells and merozoite-infected detached hepatic cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pre-erythrocytic (PE) phase of malaria infection, which extends from injection of sporozoites into the skin to the release of the first generation of merozoites, has traditionally been the 'black box' of the Plasmodium life cycle. However, since the advent of parasite transfection technology 13 years ago, our understanding of the PE phase in cellular and molecular terms has dramatically improved. Here, we review and comment on the major developments in the field in the past five years. Progress has been made in many diverse areas, including identifying and characterizing new proteins of interest, imaging parasites in vivo, understanding better the cell biology of hepatocyte infection and developing new vaccines against PE stages of the parasite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluorescent proteins have proven to be important tools for in vitro live imaging of parasites and for imaging of parasites within the living host by intravital microscopy. We observed that a red fluorescent transgenic malaria parasite of rodents, Plasmodium berghei-RedStar, is suitable for in vitro live imaging experiments but bleaches rapidly upon illumination in intravital imaging experiments using mice. We have therefore generated two additional transgenic parasite lines expressing the novel red fluorescent proteins tdTomato and mCherry, which have been reported to be much more photostable than first- and second-generation red fluorescent proteins including RedStar. We have compared all three red fluorescent parasite lines for their use in in vitro live and intravital imaging of P. berghei blood and liver parasite stages, using both confocal and wide-field microscopy. While tdTomato bleached almost as rapidly as RedStar, mCherry showed improved photostability and was bright in all experiments performed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parasite proteases play key roles in several fundamental steps of the Plasmodium life cycle, including haemoglobin degradation, host cell invasion and parasite egress. Plasmodium exit from infected host cells appears to be mediated by a class of papain-like cysteine proteases called 'serine repeat antigens' (SERAs). A SERA subfamily, represented by Plasmodium falciparum SERA5, contains an atypical active site serine residue instead of a catalytic cysteine. Members of this SERAser subfamily are abundantly expressed in asexual blood stages, rendering them attractive drug and vaccine targets. In this study, we show by antibody localization and in vivo fluorescent tagging with the red fluorescent protein mCherry that the two P. berghei serine-type family members, PbSERA1 and PbSERA2, display differential expression towards the final stages of merozoite formation. Via targeted gene replacement, we generated single and double gene knockouts of the P. berghei SERAser genes. These loss-of-function lines progressed normally through the parasite life cycle, suggesting a specialized, non-vital role for serine-type SERAs in vivo. Parasites lacking PbSERAser showed increased expression of the cysteine-type PbSERA3. Compensatory mechanisms between distinct SERA subfamilies may thus explain the absence of phenotypical defect in SERAser disruptants, and challenge the suitability to develop potent antimalarial drugs based on specific inhibitors of Plasmodium serine-type SERAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the blood meal of a Plasmodium-infected mosquito, 10 to 100 parasites are inoculated into the skin and a proportion of these migrate via the bloodstream to the liver where they infect hepatocytes. The Plasmodium liver stage, despite its clinical silence, represents a highly promising target for antimalarial drug and vaccine approaches. Successfully invaded parasites undergo a massive proliferation in hepatocytes, producing thousands of merozoites that are transported into a blood vessel to infect red blood cells. To successfully develop from the liver stage into infective merozoites, a tight regulation of gene expression is needed. Although this is a very interesting aspect in the biology of Plasmodium, little is known about gene regulation in Plasmodium parasites in general and in the liver stage in particular. We have functionally analyzed a novel promoter region of the rodent parasite Plasmodium berghei that is exclusively active during the liver stage of the parasite. To prove stage-specific activity of the promoter, GFP and luciferase reporter assays have been successfully established, allowing both qualitative and accurate quantitative analysis. To further characterize the promoter region, the transcription start site was mapped by rapid amplification of cDNA ends (5'-RACE). Using promoter truncation experiments and site-directed mutagenesis within potential transcription factor binding sites, we suggest that the minimal promoter contains more than one binding site for the recently identified parasite-specific ApiAP2 transcription factors. The identification of a liver stage-specific promoter in P. berghei confirms that the parasite is able to tightly regulate gene expression during its life cycle. The identified promoter region might now be used to study the biology of the Plasmodium liver stage, which has thus far proven problematic on a molecular level. Stage-specific expression of dominant-negative mutant proteins and overexpression of proteins normally active in other life cycle stages will help to understand the function of the proteins investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although most of the Papua New Guinea highlands are too high for stable malaria transmission, local epidemics are a regular feature of the region. Few detailed descriptions of such epidemics are available, however. We describe the investigation of a malaria epidemic in the Obura Valley, Eastern Highlands Province, Papua New Guinea. Of the 244 samples examined by microscopy, 6.6% were positive for Plasmodium falciparum only, 9.4% were positive for Plasmodium vivax only, and 1.2% were mixed infections. MSP2 and MSP3alpha genotyping and AMA1 sequencing were used to determine the genetic variation present in a sample of P. falciparum and P. vivax infections. The P. vivax infections were found to be genetically highly diverse. In contrast, all P. falciparum samples were of a single genotype. This striking difference in genetic diversity suggests endemic, low-level local transmission for P. vivax but an outside introduction of P. falciparum as the most likely source of the epidemic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) gene were examined to assess their associations with chloroquine resistance in clinical samples from Armopa (Papua) and Papua New Guinea. In Papua, two of the five pfcrt haplotypes found were new: SVIET from Armopa and CVIKT from an isolate in Timika. There was also a strong association (P < 0.0001) between the pfcrt 76T allele and chloroquine resistance in 50 samples. In Papua New Guinea, mutations in the pfcrt gene were observed in 15 isolates with chloroquine minimum inhibitory concentrations (MICs) of 16-64 pmol, while the remaining six isolates, which had a wild-type pfcrt gene at codon 76, had MICs of 2-8 pmol. These observations confirm that mutations at codon 76 in the pfcrt gene are present in both in vivo and in vitro cases of chloroquine resistance, and that detection of the pfcrt 76T allele could predict potential chloroquine treatment failures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to develop a simple, field-practical, and effective in vitro method for determining the sensitivity of fresh erythrocytic Plasmodium vivax isolates to a range of antimalarials. The method used is a modification of the standard World Health Organization (WHO) microtest for determination of P.falciparum drug sensitivity. The WHO method was modified by removing leukocytes and using a growth medium supplemented with AB(+) serum. We successfully carried out 34 in vitro drug assays on 39 P. vivax isolates collected from the Mae Sod malaria clinic, Tak Province, Thailand. The mean percentage of parasites maturing to schizonts (six or more merozoites) in control wells was 66.5% +/- 5.9% (standard deviation). This level of growth in the control wells enabled rapid microscopic determination (5 min per isolate per drug) of the MICs of chloroquine, dihydroartemisinin, WR238605 (tafenoquine), and sulfadoxine. P. vivax was relatively sensitive to chloroquine (MIC = 160 ng/ml, 50% inhibitory concentration [IC50] = 49.8 ng/ml) and dihydroartemisinin (MIC = 0.5 ng/ml, IC50 = 0.47 ng/ml). The poor response of P. vivax to both tafenoquine (MIC = 14,000 ng/ml, IC50 = 9,739 ng/ml) and sulfadoxine (MIC = 500,000 ng/ml, IC50 = 249,000 ng/ml) was due to the slow action of these drugs and the innate resistance of P. vivax to sulfadoxine. The in vitro assay developed in our study should be useful both for assessing the antimalarial sensitivity of P. vivax populations and for screening new antimalarials in the absence of long-term P. vivax cultures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We assessed monthly doses of tafenoquine for preventing Plasmodium vivax and multidrug-resistant P. falciparum malaria. In a randomized, double-blind, placebo-controlled study, 205 Thai soldiers received either a loading dose of tafenoquine 400 mg ( base) daily for 3 days, followed by single monthly 400-mg doses (n = 104), or placebo (n = 101), for up to 5 consecutive months. In volunteers completing follow-up (96 tafenoquine and 91 placebo recipients), there were 22 P. vivax, 8 P. falciparum, and 1 mixed infection. All infections except 1 P. vivax occurred in placebo recipients, giving tafenoquine a protective efficacy of 97% for all malaria (95% confidence interval [CI], 82%-99%), 96% for P. vivax malaria (95% CI, 76%-99%), and 100% for P. falciparum malaria ( 95% CI, 60%-100%). Monthly tafenoquine was safe, well tolerated, and highly effective in preventing P. vivax and multidrug-resistant P. falciparum malaria in Thai soldiers during 6 months of prophylaxis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sulfadoxine is predominantly used in combination with pyrimethamine, commonly known as Fansidar, for the treatment of Plasmodium falciparum. This combination is usually less effective against Plasmodium vivax, probably due to the innate refractoriness of parasites to the sulfadoxine component. To investigate this mechanism of resistance by P. vivax to sulfadoxine, we cloned and sequenced the P. vivax dhps (pvdhps) gene. The protein sequence was determined, and three-dimensional homology models of dihydropteroate synthase (DHPS) from P. vivax as well as P. falciparum were created. The docking of sulfadoxine to the two DHPS models allowed us to compare contact residues in the putative sulfadoxine-binding site in both species. The predicted sulfadoxine-binding sites between the species differ by one residue, V585 in P. vivax, equivalent to A613 in P. falciparum. V585 in P. vivax is predicted by energy minimization to cause a reduction in binding of sulfadoxine to DHPS in P. vivax compared to P. falciparum. Sequencing dhps genes from a limited set of geographically different P. vivax isolates revealed that V585 was present in all of the samples, suggesting that V585 may be responsible for innate resistance of P. vivax to sulfadoxine. Additionally, amino acid mutations were observed in some P. vivax isolates in positions known to cause resistance in P. falciparum, suggesting that, as in P. falciparum, these mutations are responsible for acquired increases in resistance of P. vivax to sulfadoxine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A double-site enzyme-linked lactate dehydrogenase enzyme inummodetection assay was tested against field isolates of Plasmodium falciparum for assessing in vitro drug susceptibilities to a wide range of antimalarial drugs. Its sensitivity allowed the use of parasite densities as low as 200 parasites/mul of blood. Being a nonisotopic, colorimetric assay, it lies within the capabilities of a modest laboratory at the district level.