359 resultados para Piscataway
Resumo:
A novel open-winding brushless doubly-fed generator (BDFG) system with two two-level bidirectional converters is proposed. This topology is equivalent to a three-level bidirectional converter connected to the typical BDFG, but solves the unbalanced-voltage-division problem of DC capacitor in the three-level converter, and has lower converter capacity, more flexible control mode, and better fault-tolerant ability. The direct power control (DPC) based on the twelve sections is adopted to implement the power tracking of the open-winding BDFG system, which is compared with the typical BDFG DPC system based on the six and twelve sections to verify the advantages of the proposed scheme.
Resumo:
Concept evaluation at the early phase of product development plays a crucial role in new product development. It determines the direction of the subsequent design activities. However, the evaluation information at this stage mainly comes from experts' judgments, which is subjective and imprecise. How to manage the subjectivity to reduce the evaluation bias is a big challenge in design concept evaluation. This paper proposes a comprehensive evaluation method which combines information entropy theory and rough number. Rough number is first presented to aggregate individual judgments and priorities and to manipulate the vagueness under a group decision-making environment. A rough number based information entropy method is proposed to determine the relative weights of evaluation criteria. The composite performance values based on rough number are then calculated to rank the candidate design concepts. The results from a practical case study on the concept evaluation of an industrial robot design show that the integrated evaluation model can effectively strengthen the objectivity across the decision-making processes.
Resumo:
This paper will look at the benefits and limitations of content distribution using Forward Error Correction (FEC) in conjunction with the Transmission Control Protocol (TCP). FEC can be used to reduce the number of retransmissions which would usually result from a lost packet. The requirement for TCP to deal with any losses is then greatly reduced. There are however side-effects to using FEC as a countermeasure to packet loss: an additional requirement for bandwidth. When applications such as real-time video conferencing are needed, delay must be kept to a minimum, and retransmissions are certainly not desirable. A balance, therefore, between additional bandwidth and delay due to retransmissions must be struck. Our results show that the throughput of data can be significantly improved when packet loss occurs using a combination of FEC and TCP, compared to relying solely on TCP for retransmissions. Furthermore, a case study applies the result to demonstrate the achievable improvements in the quality of streaming video perceived by end users.
Resumo:
Due to huge popularity of portable terminals based on Wireless LANs and increasing demand for multimedia services from these terminals, the earlier structures and protocols are insufficient to cover the requirements of emerging networks and communications. Most research in this field is tailored to find more efficient ways to optimize the quality of wireless LAN regarding the requirements of multimedia services. Our work is to investigate the effects of modulation modes at the physical layer, retry limits at the MAC layer and packet sizes at the application layer over the quality of media packet transmission. Interrelation among these parameters to extract a cross-layer idea will be discussed as well. We will show how these parameters from different layers jointly contribute to the performance of service delivery by the network. The results obtained could form a basis to suggest independent optimization in each layer (an adaptive approach) or optimization of a set of parameters from different layers (a cross-layer approach). Our simulation model is implemented in the NS-2 simulator. Throughput and delay (latency) of packet transmission are the quantities of our assessments. © 2010 IEEE.
Resumo:
In this work, we present an adaptive unequal loss protection (ULP) scheme for H264/AVC video transmission over lossy networks. This scheme combines erasure coding, H.264/AVC error resilience techniques and importance measures in video coding. The unequal importance of the video packets is identified in the group of pictures (GOP) and the H.264/AVC data partitioning levels. The presented method can adaptively assign unequal amount of forward error correction (FEC) parity across the video packets according to the network conditions, such as the available network bandwidth, packet loss rate and average packet burst loss length. A near optimal algorithm is developed to deal with the FEC assignment for optimization. The simulation results show that our scheme can effectively utilize network resources such as bandwidth, while improving the quality of the video transmission. In addition, the proposed ULP strategy ensures graceful degradation of the received video quality as the packet loss rate increases. © 2010 IEEE.
Resumo:
We investigate a MIMO double-scattering model with both local and remote scatterers, aiming to investigate the effect of scatterer density on channel performances, such as capacity, correlation, and the condition number of the channel matrix in flat and frequency-selective fading channels. The investigations are carried out in terms of scatterer density. It is shown that in flat fading channels the scatterer density has a marginal effect on channel performances when the area of the two scatterer zones is fixed, while a significant impact is observed when the area of the scatterer zones is allowed to change. In frequency-selective fading channels, no matter the area of the scatterer zones is fixed or not, scatterer density can affect the channel capacity to a certain degree that depends on the length of the coding block of the transmitted signals. © 2010 IEEE.
Resumo:
This research is investigating the claim that Change Data Capture (CDC) technologies capture data changes in real-time. Based on theory, our hypothesis states that real-time CDC is not achievable with traditional approaches (log scanning, triggers and timestamps). Traditional approaches to CDC require a resource to be polled, which prevents true real-time CDC. We propose an approach to CDC that encapsulates the data source with a set of web services. These web services will propagate the changes to the targets and eliminate the need for polling. Additionally we propose a framework for CDC technologies that allow changes to flow from source to target. This paper discusses current CDC technologies and presents the theory about why they are unable to deliver changes in real-time. Following, we discuss our web service approach to CDC and accompanying framework, explaining how they can produce real-time CDC. The paper concludes with a discussion on the research required to investigate the real-time capabilities of CDC technologies. © 2010 IEEE.
Resumo:
This paper adopts a sales resource management (SRM) framework to provide guidance on how to develop effective salespeople via sales training. SRM can be used to identify the individual training needs based on the individual-based modelling data. The individual-based modelling data can also be used to evaluate the outcome of sales training. This paper also gives some suggestions on the forms of sales training which are most likely to develop effective salespeople. © 2010 IEEE.
Representing clinical documents to support automatic retrieval of evidence from the Cochrane Library
Resumo:
The overall aim of our research is to develop a clinical information retrieval system that retrieves systematic reviews and underlying clinical studies from the Cochrane Library to support physician decision making. We believe that in order to accomplish this goal we need to develop a mechanism for effectively representing documents that will be retrieved by the application. Therefore, as a first step in developing the retrieval application we have developed a methodology that semi-automatically generates high quality indices and applies them as descriptors to documents from The Cochrane Library. In this paper we present a description and implementation of the automatic indexing methodology and an evaluation that demonstrates that enhanced document representation results in the retrieval of relevant documents for clinical queries. We argue that the evaluation of information retrieval applications should also include an evaluation of the quality of the representation of documents that may be retrieved. ©2010 IEEE.
Resumo:
Many tracking algorithms have difficulties dealing with occlusions and background clutters, and consequently don't converge to an appropriate solution. Tracking based on the mean shift algorithm has shown robust performance in many circumstances but still fails e.g. when encountering dramatic intensity or colour changes in a pre-defined neighbourhood. In this paper, we present a robust tracking algorithm that integrates the advantages of mean shift tracking with those of tracking local invariant features. These features are integrated into the mean shift formulation so that tracking is performed based both on mean shift and feature probability distributions, coupled with an expectation maximisation scheme. Experimental results show robust tracking performance on a series of complicated real image sequences. © 2010 IEEE.
Resumo:
Research on the relationship between reproductive work and women´s life trajectories including the experience of labour migration has mainly focused on the case of relatively young mothers who leave behind, or later re-join, their children. While it is true that most women migrate at a younger age, there are a significant number of cases of men and women who move abroad for labour purposes at a more advanced stage, undertaking a late-career migration. This is still an under-estimated and under-researched sub-field that uncovers a varied range of issues, including the global organization of reproductive work and the employment of migrant women as domestic workers late in their lives. By pooling the findings of two qualitative studies, this article focuses on Peruvian and Ukrainian women who seek employment in Spain and Italy when they are well into their forties, or older. A commonality the two groups of women share is that, independently of their level of education and professional experience, more often than not they end up as domestic and care workers. The article initially discusses the reasons for late-career female migration, taking into consideration the structural and personal determinants that have affected Peruvian and Ukrainian women’s careers in their countries of origin and settlement. After this, the focus is set on the characteristics of domestic employment at later life, on the impact on their current lives, including the transnational family organization, and on future labour and retirement prospects. Apart from an evaluation of objective working and living conditions, we discuss women’s personal impressions of being domestic workers in the context of their occupational experiences and family commitments. In this regard, women report varying levels of personal and professional satisfaction, as well as different patterns of continuity-discontinuity in their work and family lives, and of optimism towards the future. Divergences could be, to some extent, explained by the effect of migrants´ transnational social practices and policies of states.
Resumo:
Recommender systems (RS) are used by many social networking applications and online e-commercial services. Collaborative filtering (CF) is one of the most popular approaches used for RS. However traditional CF approach suffers from sparsity and cold start problems. In this paper, we propose a hybrid recommendation model to address the cold start problem, which explores the item content features learned from a deep learning neural network and applies them to the timeSVD++ CF model. Extensive experiments are run on a large Netflix rating dataset for movies. Experiment results show that the proposed hybrid recommendation model provides a good prediction for cold start items, and performs better than four existing recommendation models for rating of non-cold start items.
Resumo:
Over the last decade, there has been a trend where water utility companies aim to make water distribution networks more intelligent in order to improve their quality of service, reduce water waste, minimize maintenance costs etc., by incorporating IoT technologies. Current state of the art solutions use expensive power hungry deployments to monitor and transmit water network states periodically in order to detect anomalous behaviors such as water leakage and bursts. However, more than 97% of water network assets are remote away from power and are often in geographically remote underpopulated areas, facts that make current approaches unsuitable for next generation more dynamic adaptive water networks. Battery-driven wireless sensor/actuator based solutions are theoretically the perfect choice to support next generation water distribution. In this paper, we present an end-to-end water leak localization system, which exploits edge processing and enables the use of battery-driven sensor nodes. Our system combines a lightweight edge anomaly detection algorithm based on compression rates and an efficient localization algorithm based on graph theory. The edge anomaly detection and localization elements of the systems produce a timely and accurate localization result and reduce the communication by 99% compared to the traditional periodic communication. We evaluated our schemes by deploying non-intrusive sensors measuring vibrational data on a real-world water test rig that have had controlled leakage and burst scenarios implemented.
Resumo:
Crop monitoring and more generally land use change detection are of primary importance in order to analyze spatio-temporal dynamics and its impacts on environment. This aspect is especially true in such a region as the State of Mato Grosso (south of the Brazilian Amazon Basin) which hosts an intensive pioneer front. Deforestation in this region as often been explained by soybean expansion in the last three decades. Remote sensing techniques may now represent an efficient and objective manner to quantify how crops expansion really represents a factor of deforestation through crop mapping studies. Due to the special characteristics of the soybean productions' farms in Mato Grosso (area varying between 1000 hectares and 40000 hectares and individual fields often bigger than 100 hectares), the Moderate Resolution Imaging Spectroradiometer (MODIS) data with a near daily temporal resolution and 250 m spatial resolution can be considered as adequate resources to crop mapping. Especially, multitemporal vegetation indices (VI) studies have been currently used to realize this task [1] [2]. In this study, 16-days compositions of EVI (MODQ13 product) data are used. However, although these data are already processed, multitemporal VI profiles still remain noisy due to cloudiness (which is extremely frequent in a tropical region such as south Amazon Basin), sensor problems, errors in atmospheric corrections or BRDF effect. Thus, many works tried to develop algorithms that could smooth the multitemporal VI profiles in order to improve further classification. The goal of this study is to compare and test different smoothing algorithms in order to select the one which satisfies better to the demand which is classifying crop classes. Those classes correspond to 6 different agricultural managements observed in Mato Grosso through an intensive field work which resulted in mapping more than 1000 individual fields. The agricultural managements above mentioned are based on combination of soy, cotton, corn, millet and sorghum crops sowed in single or double crop systems. Due to the difficulty in separating certain classes because of too similar agricultural calendars, the classification will be reduced to 3 classes : Cotton (single crop), Soy and cotton (double crop), soy (single or double crop with corn, millet or sorghum). The classification will use training data obtained in the 2005-2006 harvest and then be tested on the 2006-2007 harvest. In a first step, four smoothing techniques are presented and criticized. Those techniques are Best Index Slope Extraction (BISE) [3], Mean Value Iteration (MVI) [4], Weighted Least Squares (WLS) [5] and Savitzky-Golay Filter (SG) [6] [7]. These techniques are then implemented and visually compared on a few individual pixels so that it allows doing a first selection between the five studied techniques. The WLS and SG techniques are selected according to criteria proposed by [8]. Those criteria are: ability in eliminating frequent noises, conserving the upper values of the VI profiles and keeping the temporality of the profiles. Those selected algorithms are then programmed and applied to the MODIS/TERRA EVI data (16-days composition periods). Tests of separability are realized based on the Jeffries-Matusita distance in order to see if the algorithms managed in improving the potential of differentiation between the classes. Those tests are realized on the overall profile (comprising 23 MODIS images) as well as on each MODIS sub-period of the profile [1]. This last test is a double interest process because it allows comparing the smoothing techniques and also enables to select a set of images which carries more information on the separability between the classes. Those selected dates can then be used to realize a supervised classification. Here three different classifiers are tested to evaluate if the smoothing techniques as a particular effect on the classification depending on the classifiers used. Those classifiers are Maximum Likelihood classifier, Spectral Angle Mapper (SAM) classifier and CHAID Improved Decision tree. It appears through the separability tests on the overall process that the smoothed profiles don't improve efficiently the potential of discrimination between classes when compared with the original data. However, the same tests realized on the MODIS sub-periods show better results obtained with the smoothed algorithms. The results of the classification confirm this first analyze. The Kappa coefficients are always better with the smoothing techniques and the results obtained with the WLS and SG smoothed profiles are nearly equal. However, the results are different depending on the classifier used. The impact of the smoothing algorithms is much better while using the decision tree model. Indeed, it allows a gain of 0.1 in the Kappa coefficient. While using the Maximum Likelihood end SAM models, the gain remains positive but is much lower (Kappa improved of 0.02 only). Thus, this work's aim is to prove the utility in smoothing the VI profiles in order to improve the final results. However, the choice of the smoothing algorithm has to be made considering the original data used and the classifier models used. In that case the Savitzky-Golay filter gave the better results.