884 resultados para Piecewise linear systems


Relevância:

80.00% 80.00%

Publicador:

Resumo:

O filtro de Kalman é aplicado para filtragem inversa ou problema de deconvolução. Nesta dissertação aplicamos o método de Kalman, considerado como uma outra visão de processamento no domínio do tempo, para separar sinal-ruído em perfil sônico admitido como uma realização de um processo estocástico não estacionário. Em um trabalho futuro estudaremos o problema da deconvolução. A dedução do filtro de Kalman destaca a relação entre o filtro de Kalman e o de Wiener. Estas deduções são baseadas na representação do sistema por variáveis de estado e modelos de processos aleatórios, com a entrada do sistema linear acrescentado com ruído branco. Os resultados ilustrados indicam a aplicabilidade dessa técnica para uma variedade de problemas de processamento de dados geofísicos, por exemplo, ideal para well log. O filtro de Kalman oferece aos geofísicos de exploração informações adicionais para o processamento, problemas de modelamento e a sua solução.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Matematica Aplicada e Computacional - FCT

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Some changes in the application of the numeric trapezoidal integration are analyzed for applications considering pi circuits. It is considered numeric and computational proceedings for improving the numeric results obtained with associations of pi circuits. In numeric integration solutions of the linear systems, it is common to represent these associations of pi circuits by only one matrix. This representation introduces undesirable numeric oscillations in simulations of the dynamics of wave propagation in electrical systems. The proposed changes improve the results of application of cascades of pi circuits associated to the trapezoidal integration, avoiding that the numerical oscillations, or Gibb's oscillations, have high values and are slowly damped. For the carried out simulations, different number of pi circuits and voltage sources are checked, confirming the reduction of the influence of the numeric oscillations on the obtained results. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Saúde Coletiva - FMB

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Matemática em Rede Nacional - IBILCE

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a technique for performing analog design synthesis at circuit level providing feedback to the designer through the exploration of the Pareto frontier. A modified simulated annealing which is able to perform crossover with past anchor points when a local minimum is found which is used as the optimization algorithm on the initial synthesis procedure. After all specifications are met, the algorithm searches for the extreme points of the Pareto frontier in order to obtain a non-exhaustive exploration of the Pareto front. Finally, multi-objective particle swarm optimization is used to spread the results and to find a more accurate frontier. Piecewise linear functions are used as single-objective cost functions to produce a smooth and equal convergence of all measurements to the desired specifications during the composition of the aggregate objective function. To verify the presented technique two circuits were designed, which are: a Miller amplifier with 96 dB Voltage gain, 15.48 MHz unity gain frequency, slew rate of 19.2 V/mu s with a current supply of 385.15 mu A, and a complementary folded cascode with 104.25 dB Voltage gain, 18.15 MHz of unity gain frequency and a slew rate of 13.370 MV/mu s. These circuits were synthesized using a 0.35 mu m technology. The results show that the method provides a fast approach for good solutions using the modified SA and further good Pareto front exploration through its connection to the particle swarm optimization algorithm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hermite interpolation is increasingly showing to be a powerful numerical solution tool, as applied to different kinds of second order boundary value problems. In this work we present two Hermite finite element methods to solve viscous incompressible flows problems, in both two- and three-dimension space. In the two-dimensional case we use the Zienkiewicz triangle to represent the velocity field, and in the three-dimensional case an extension of this element to tetrahedra, still called a Zienkiewicz element. Taking as a model the Stokes system, the pressure is approximated with continuous functions, either piecewise linear or piecewise quadratic, according to the version of the Zienkiewicz element in use, that is, with either incomplete or complete cubics. The methods employ both the standard Galerkin or the Petrov–Galerkin formulation first proposed in Hughes et al. (1986) [18], based on the addition of a balance of force term. A priori error analyses point to optimal convergence rates for the PG approach, and for the Galerkin formulation too, at least in some particular cases. From the point of view of both accuracy and the global number of degrees of freedom, the new methods are shown to have a favorable cost-benefit ratio, as compared to velocity Lagrange finite elements of the same order, especially if the Galerkin approach is employed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

[EN]A natural generalization of the classical Moore-Penrose inverse is presented. The so-called S-Moore-Penrose inverse of a m x n complex matrix A, denoted by As, is defined for any linear subspace S of the matrix vector space Cnxm. The S-Moore-Penrose inverse As is characterized using either the singular value decomposition or (for the nonsingular square case) the orthogonal complements with respect to the Frobenius inner product. These results are applied to the preconditioning of linear systems based on Frobenius norm minimization and to the linearly constrained linear least squares problem.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

[EN ]The classical optimal (in the Frobenius sense) diagonal preconditioner for large sparse linear systems Ax = b is generalized and improved. The new proposed approximate inverse preconditioner N is based on the minimization of the Frobenius norm of the residual matrix AM − I, where M runs over a certain linear subspace of n × n real matrices, defined by a prescribed sparsity pattern. The number of nonzero entries of the n×n preconditioning matrix N is less than or equal to 2n, and n of them are selected as the optimal positions in each of the n columns of matrix N. All theoretical results are justified in detail…