943 resultados para Phenolic Polymers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method for the simultaneous determination of the stilbene resveratrol, four phenolic acids (syringic, coumaric, caffeic, and gallic acids), and five flavonoids (catechin, rutin, kaempferol, myricetin, and quercetin) in wine by CE was developed and validated. The CE electrolyte composition and instrumental conditions were optimized using 2(7-3) factorial design and response surface analysis, showing sodium tetraborate, MeOH, and their interaction as the most influential variables. The optimal electrophoretic conditions, minimizing the chromatographic resolution statistic values, consisted of 17 mmol/L sodium tetraborate with 20% methanol as electrolyte, constant voltage of 25 kV, hydrodynamic injection at 50 mbar for 3 s, and temperature of 25 degrees C. The R(2) values for linearity varied from 0.994 to 0.999; LOD and LOQ were 0.1 to 0.3 mg/L and 0.4 to 0.8 mg/L, respectively. The RSDs for migration time and peak area obtained from ten consecutive injections were less than 2% and recoveries varied from 97 to 102%. The method was applied to 23 samples of inexpensive Brazilian wines, showing wide compositional variation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The trypanocidal activity of crude extracts and fractions from the leaves and stems of Peperomia obtusifolia (Piperaceae) was evaluated in vitro against the epimastigote forms of Trypanosoma cruzi. Bioactivity-guided fractionation of the most active extracts afforded seven known compounds, including three chromanes, two furofuran lignans and two flavone C-diglycosides. The most active compounds were the chromanes peperobtusin A and 3,4-dihydro-5-hydroxy-2,7-dimethyl-8-(2 ``-methyl-2 ``-butenyl)-2-(4`-methyl-1`,3`-pentadienyl)-2H-1-benzopyran-6-carboxylic acid, with IC(50) values of 3.1 mu M (almost three times more active than the positive control benznidazole, IC(50) 10.4 mu M) and 27.0 mu M, respectively. Cytotoxicity assays using peritoneal murine macrophages indicated that the chromanes were not toxic at the level of the IC(50) for trypanocidal activity. This is the first report on the trypanocidal activity besides unspecific cytotoxicity of chromanes from Peperomia species. Additionally it represents the first time isolation of 3,4-dihydro5-hydroxy-2,7-dimethyl-8-(2 ``-methyl-2 ``-butenyl)-2-(4`-methyl-1`,3`-pentadienyl)-2H-1-benzopyran-6-carboxylic acid from P. obtusifolia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two porous mixed valent diruthenium(II,III)-dicarboxylate compounds have been prepared and characterized by spectroscopic methods, X-ray diffraction and thermogravimetry. Crystalline solids of [Ru(2)(tere)(2)Cl] center dot 3.5H(2)O (tere=terephthalate) and [Ru(2)(adip)(2)Cl] center dot 1.5H(2)O (adip=adipate) consist of extended chains in which polymeric layers of multiply metal-metal bonded [Ru(2)](5+) cores are bridged by dicarboxylate ligands in paddlewheel type geometries. Units of [Ru(2)(dicarboxylate)(2)](n)(+) are linked by axial bridging chloride ions generating three-dimensional networks. The polymers loose non-bonded water molecules at low temperatures but do not undergo thermal decomposition below 280-300 degrees C. Both of compounds exhibit high BET surface areas, [Ru(2)(tere)(2)Cl]: 235 m(2) g(-1) and [Ru(2)(adip)(2)Cl]: 281 m(2) g(-1), and occlude similar numbers of mol of N(2) per mol of metal. The terephthalate ligand generated an organized structure with supermicropores (total pore size of 0.24 cm(3) g(-1)) while the adipate ligand led to a mesoporous structure (total pore sizes of 0.47 cm(3) g(-1)) for the corresponding diruthenium(II,III)-dicarboxylate polymers. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the first time, the resonance Raman spectroscopy was used to characterize polymers derived from meta- and para-nitroanilines. In order to improve the polymer structure analysis, other techniques were also used such as FTIR, UV-vis, XRD, XPS, EPR and N K-XANES. The insertion of strong electron-withdrawing groups (NO2) in polyaniline (PANI)-like backbone causes drastic changes in the lower energy charge transfer states, related to the polymer effective conjugation length. The resonance Raman data show that the NO2 moiety has a minor contribution on the CT state in poly(meta-nitroaniline), PMN, while in the poly(para-nitroaniline), PPN, the quinoid structure induced by para-substitution increases the charge density of NO2 groups, causing a more localized chromophore. The characterization of the imine nitrogen and of the protonated segments was done by XPS, N K-XANES and EPR spectroscopies and the lower polymerization degree of PPN, in comparison to PMN, is confirmed by XRD and TG data. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a FT-Raman study (lambda(0) = 1064 nm) of naturally occurring polyester poly[(R)-3-hydroxybutyrate] (PHB) and its copolymer poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] (PHBV) with 5,8 and 12 mol % of HV (hydroxyvalerate). The FT-Raman spectra of films indicate that full width at half height of the band centered at 1725 cm(-1) and relative intensity of bands at 1443 and 1458 cm(-1) can be use to estimate the crystalline degree in film samples. The similarity between Raman spectra of molten PHB and PHBV and theirs CDCl(3) solutions suggested that molten polymers present similar conformation than polymers in solution. Raman data of these samples showed that bands at 1220, 1402, 1725, 2998 and 3009 cm(-1) are due to crystalline helical structure and the bands at 1453, 1740, 2881, 2938 and 2990 cm(-1) are originated from disordered domains. It is shown that composition of PHBV samples can be estimated by analyzing the ratio of the intensity of the bands at 2938 cm(-1) (nu C-H) and 1740 cm(-1) (nu C=O) in the spectra of solutions and of bands at 1354 (wCH(2)) and 1740 cm(-1) (nu C=O) in spectra of molten polymers. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Curaua fibers were treated with ionized air to improve the fiber/phenolic matrix adhesion.The treatment with ionized air did not change the thermal stability of the fibers. The impact strength increased with increase in the fiber treatment time. SEM micrographs of the fibers showed that the ionized air treatment led to separation of the fiber bundles. Treatment for 12 h also caused a partial degradation of the fibers, which prompted the matrix to transfer the load to a poorer reinforcing agent during impact, thereby decreasing the impact strength of the related composite. The composites reinforced with fibers treated with ionized air absorbed less water than those reinforced with untreated fibers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sisal fibers have been chemically modified by reaction with lignins, extracted from sugarcane bagasse and Pinus-type wood and then hydroxymethylated, to increase adhesion in resol-type phenolic thermoset matrices. Inverse gas chromatography (IGC) results showed that acidic sites predominate for unmodified/modified sisal fibers and for phenolic thermoset, indicating that the phenolic matrix has properties that favor the interaction with sisal fibers. The IGC results also showed that the phenolic thermoset has a dispersive component closer to those of the modified fibers suggesting that thermoset interactions with the less polar modified fibers are favored. Surface SEM images of the modified fibers showed that the fiber bundle deaggregation increased after the treatment, making the interfibrillar structure less dense in comparison with that of unmodified fibers, which increased the contact area and encouraged microbial biodegradation in simulated soil. Water diffusion was observed to be faster for composites reinforced with modified fibers, since the phenolic resin penetrated better into modified fibers, thereby blocking water passage through their channels. Overall, composites` properties showed that modified fibers promote a significant reduction in the hydrophilic character, and consequently of the reinforced composite without a major effect on impact strength and with increased storage modulus. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lignocellulosic materials can significantly contribute to the development of biobased composites. In this work, glyoxal-phenolic resins for composites were prepared using glyoxal, which is a dialdehyde obtained from several natural resources. The resins were characterized by (1)H, (13)C, (2)D, and (31)P NMR spectroscopies. Resorcinol (10%) was used as an accelerator for curing the glyoxal-phenol resins in order to obtain the thermosets. The impact-strength measurement showed that regardless of the cure cycle used, the reinforcement of thermosets by 30% (w/w) sisal fibers improved the impact strength by one order of magnitude. Curing with cycle 1 (150 degrees C) induced a high diffusion coefficient for water absorption in composites, due to less interaction between the sisal fibers and water. The composites cured with cycle 2 (180 degrees C) had less glyoxal resin coverage of the cellulosic fibers, as observed by images of the fractured interface observed by SEM. This study shows that biobased composites with good properties can be prepared using a high proportion of materials obtained from natural resources. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, composites based on a phenolic matrix and untreated- and treated sisal fibers were prepared. The treated sisal fibers used were those reacted with NaOH 2% solution and esterified using benzophenonetetracarboxylic dianhydride (BTDA). These treated fibers were modified with the objective of improving the adhesion of the fiber-matrix interface, which in turn influences the properties of the composites. BTDA was chosen as the esterifying agent to take advantage of the possibility of introducing; the polar and aromatic groups that are also present in the matrix structure into the surface of the fiber, which could then intensify the interactions occurring in the fiber-matrix interface. The fibers were then analyzed by SEM and FTIR to ascertain their chemical composition. The results showed that the fibers had been successfully modified. The composites (reinforced with 15%, w/w of 3.0 cm length sisal fiber randomly distributed) were characterized by SEM, impact strength, and water absorption capacity. In the tests conducted, the response of the composites was affected both by properties of the matrix and the fibers, besides the interfacial properties of the fiber-matrix. Overall, the results showed that the fiber treatment resulted in a composite that was less hygroscopic although with somewhat lower impact strength, when compared with the composite reinforced with untreated sisal fibers. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 115: 269-276, 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present work was to investigate the toughening of phenolic thermoset and its composites reinforced with sisal fibers, using hydroxyl-terminated polybutadiene rubber (HTPB) as both impact modifier and coupling agent. Substantial increase in the impact strength of the thermoset was achieved by the addition 10% of HTPB. Scanning electron microscopy (SEM) images of the material with 15% HTPB content revealed the formation of some rubber aggregates that reduced the efficiency of the toughening mechanism. In composites, the toughening effect was observed only when 2.5% of HTPB was added. The rubber aggregates were found located mainly at the matrix-fiber interface suggesting that HTPB could be used as coupling agent between the sisal fibers and the phenolic matrix. A composite reinforced with sisal fibers pre-impregnated with HTPB was then prepared; its SEM images showed the formation of a thin coating of HTPB on the surface of the fibers. The ability of HTBP as coupling agent between sisal fibers and phenolic matrix was then investigated by preparing a composite reinforced with sisal fibers pre-treated with HTPB. As revealed by its SEM images, the HTPB pre-treatment of the fibers resulted on the formation of a thin coating of HTPB on the surface of the fibers, which provided better compatibility between the fibers and the matrix at their interface, resulting in a material with low water absorption capacity and no loss of impact strength. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A total of 25 sugarcane spirit extracts of six different Brazilian woods and oak, commonly used by cooperage industries for aging cachaca, were analyzed for the presence of 14 phenolic compounds (ellagic acid, gallic acid, vanillin, syringaldehyde, synapaldehyde, coniferaldehyde, vanillic acid, syringic acid, quercetin, trans-resveratrol, catechin, epicatechin, eugenol, and myricetin) and two coumarins (scopoletin and coumarin) by HPLC-DAD-fluorescence and HPLC-ESI-MS(n). Furthermore, an HPLC-DAD chromatographic fingerprint was build-up using chemometric analysis based on the chromatographic elution profiles of the extracts monitored at 280 nm. Major components identified and quantified in Brazilian wood extracts were coumarin, ellagic acid, and catechin, whereas oak extracts shown a major contribution of catechin, vanillic acid, and syringaldehyde. The main difference observed among oak and Brazilian woods remains in the concentration of coumarin, catechin, syringaldehyde, and coniferaldehyde. The chemometric analysis of the quantitative profile of the 14 phenolic compounds and two coumarins in the wood extracts provides a differentiation between the Brazilian wood and oak extracts. The chromatographic fingerprint treated by multivariate analysis revealed significant differences among Brazilian woods themselves and oak, clearly defining six groups of wood extracts: (i) oak extracts, (ii) jatoba extracts, (iii) cabreuva-parda extracts, (iv) amendoim extracts, (v) canela-sassafras extracts and (vi) pequi extracts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phenolic compounds are one of the most important quality parameters of wines, since they contribute to wine organoleptic characteristics such as colour, astringency, and bitterness. Furthermore, several studies have pointed out that many show biological properties of interest, related to their antioxidant capacity. This antioxidant activity has been thoroughly studied and a wide variety of methods have been developed to evaluate it. In this study, the antioxidant activity of commercial Terras Madeirenses Portuguese wines (Madeira Island) was measured by three different analytical methods: [1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay, 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTSradical dot+)) radical cation decolourisation, and ferric reducing/antioxidant power (FRAP) for the evaluation of reducing power (PR) and correlate them with the total phenolic content determined with the Folin–Ciocalteu’s reagent using gallic acid as a standard. The total polyphenol concentration was found to vary from 252 to 1936 mg/l gallic acid equivalents (GAE). The antiradical activity varied from 0.042 to 0.715 mM Trolox equivalents and the antioxidant capacity varied from 344 to 1105 mg/l gallic acid equivalents (GAE). For the reduction power we obtained 3.45–3.86 mM quercetin equivalents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study represents the first phytochemical research of phenolic components of Sercial and Tinta Negra Vitis vinifera L. The phenolic profiles of Sercial and Tinta Negra V. vinifera L. grape skins (white and red varieties, respectively) were established using high performance liquid chromatography–diode array detection–electrospray ionisation tandem mass spectrometry (HPLC–DAD–ESI-MSn), at different ripening stages (véraison and maturity). A total of 40 phenolic compounds were identified, which included 3 hydroxybenzoic acids, 8 hydroxycinnamic acids, 4 flavanols, 5 flavanones, 8 flavonols, 4 stilbenes, and 8 anthocyanins. For the white variety, in both ripening stages, hydroxycinnamic acids and flavonols were the main phenolic classes, representing about 80% of the phenolic composition. For red variety, at véraison, hydroxycinnamic acids and flavonols were also the predominant classes (71%), but at maturity, anthocyanins represented 84% of the phenolic composition. As far as we know, 10 compounds were reported for the first time in V. vinifera L. grapes, namely protocatechuic acid-glucoside, p-hydroxybenzoyl glucoside, caftaric acid vanilloyl pentoside, p-coumaric acid-erythroside, naringenin hexose derivate, eriodictyol-glucoside, taxifolin-pentoside, quercetin-glucuronide-glucoside, malylated kaempferol-glucoside, and resveratrol dimer. These novel V. vinifera L. grape components were identified based on their MSn fragmentation profile. This data represents valuable information that may be useful to oenological management and to valorise these varieties as sources of bioactive compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel analytical approach, based on a miniaturized extraction technique, the microextraction by packed sorbent (MEPS), followed by ultrahigh pressure liquid chromatography (UHPLC) separation combined with a photodiode array (PDA) detection, has been developed and validated for the quantitative determination of sixteen biologically active phenolic constituents of wine. In addition to performing routine experiments to establish the validity of the assay to internationally accepted criteria (linearity, sensitivity, selectivity, precision, accuracy), experiments are included to assess the effect of the important experimental parameters on the MEPS performance such as the type of sorbent material (C2, C8, C18, SIL, and M1), number of extraction cycles (extract-discard), elution volume, sample volume, and ethanol content, were studied. The optimal conditions of MEPS extraction were obtained using C8 sorbent and small sample volumes (250 μL) in five extraction cycle and in a short time period (about 5 min for the entire sample preparation step). The wine bioactive phenolics were eluted by 250 μL of the mixture containing 95% methanol and 5% water, and the separation was carried out on a HSS T3 analytical column (100 mm × 2.1 mm, 1.8 μm particle size) using a binary mobile phase composed of aqueous 0.1% formic acid (eluent A) and methanol (eluent B) in the gradient elution mode (10 min of total analysis). The method gave satisfactory results in terms of linearity with r2-values > 0.9986 within the established concentration range. The LOD varied from 85 ng mL−1 (ferulic acid) to 0.32 μg mL−1 ((+)-catechin), whereas the LOQ values from 0.028 μg mL−1 (ferulic acid) to 1.08 μg mL−1 ((+)-catechin). Typical recoveries ranged between 81.1 and 99.6% for red wines and between 77.1 and 99.3% for white wines, with relative standard deviations (RSD) no larger than 10%. The extraction yields of the MEPSC8/UHPLC–PDA methodology were found between 78.1 (syringic acid) and 99.6% (o-coumaric acid) for red wines and between 76.2 and 99.1% for white wines. The inter-day precision, expressed as the relative standard deviation (RSD%), varied between 0.2% (p-coumaric and o-coumaric acids) and 7.5% (gentisic acid) while the intra-day precision between 0.2% (o-coumaric and cinnamic acids) and 4.7% (gallic acid and (−)-epicatechin). On the basis of analytical validation, it is shown that the MEPSC8/UHPLC–PDA methodology proves to be an improved, reliable, and ultra-fast approach for wine bioactive phenolics analysis, because of its capability for determining simultaneously in a single chromatographic run several bioactive metabolites with high sensitivity, selectivity and resolving power within only 10 min. Preliminary studies have been carried out on 34 real whole wine samples, in order to assess the performance of the described procedure. The new approach offers decreased sample preparation and analysis time, and moreover is cheaper, more environmentally friendly and easier to perform as compared to traditional methodologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Curaua fibers were treated with ionized air to improve the fiber/phenolic matrix adhesion.The treatment with ionized air did not change the thermal stability of the fibers. The impact strength increased with increase in the fiber treatment time. SEM micrographs of the fibers showed that the ionized air treatment led to separation of the fiber bundles. Treatment for 12 h also caused a partial degradation of the fibers, which prompted the matrix to transfer the load to a poorer reinforcing agent during impact, thereby decreasing the impact strength of the related composite. The composites reinforced with fibers treated with ionized air absorbed less water than those reinforced with untreated fibers.