967 resultados para Phase-Transformations
Resumo:
Amiton (O,O-diethyl-S-[2-(diethylamino)ethyl]phosphorothiolate), otherwise known as VG, is listed in schedule 2 of the Chemical Weapons Convention (CWC) and has a structure closely related to VX (O-ethyl-S-(2-diisopropylamino)ethylmethylphosphonothiolate). Fragmentation of protonated VG in the gas phase was performed using electrospray ionisation ion trap mass spectrometry (ESI-ITMS) and revealed several characteristic product ions. Quantum chemical calculations provide the most probable structures for these ions as well as the likely unimolecular mechanisms by which they are formed. The decomposition pathways predicted by computation are consistent with deuterium-labeling studies. The combination of experimental and theoretical data suggests that the fragmentation pathways of VG and analogous organophosphorus nerve agents, such as VX and Russian VX, are predictable and thus ESI tandem mass spectrometry is a powerful tool for the verification of unknown compounds listed in the CWC. Copyright (c) 2006 Commonwealth of Australia. Published by John Wiley & Sons, Ltd.
Resumo:
2,3-Dimethyl-2,3-dinitrobutane (DMNB) is an explosive taggant added to plastic explosives during manufacture making them more susceptible to vapour-phase detection systems. In this study, the formation and detection of gas-phase \[M+H](+), \[M+Li](+), \[M+NH(4)](+) and \[M+Na](+) adducts of DMNB was achieved using electrospray ionisation on a triple quadrupole mass spectrometer. The \[M+H](+) ion abundance was found to have a strong dependence on ion source temperature, decreasing markedly at source temperatures above 50 degrees C. In contrast, the \[M+Na](+) ion demonstrated increasing ion abundance at source temperatures up to 105 degrees C. The relative susceptibility of DMNB adduct ions toward dissociation was investigated by collision-induced dissociation. Probable structures of product ions and mechanisms for unimolecular dissociation have been inferred based on fragmentation patterns from tandem mass (MS/MS) spectra of source-formed ions of normal and isotopically labelled DMNB, and quantum chemical calculations. Both thermal and collisional activation studies suggest that the \[M+Na](+) adduct ions are significantly more stable toward dissociation than their protonated analogues and, as a consequence, the former provide attractive targets for detection by contemporary rapid screening methods such as desorption electrospray ionisation mass spectrometry. Copyright (C) 2009 Commonwealth of Australia. Published by John Wiley & Sons, Ltd.
Resumo:
High-energy synchrotron in situ X-ray powder diffraction has been used to elucidate the mechanism of the hydriding phase transformation in a LaNi5 model hydrogen storage intermetallic in real time. The transformation proceeds at 10 °C via the transient growth of an interfacial phase, the γ phase, with lattice parameters intermediate between those of the α (dilute solid solution) and β (concentrated hydride) phases. The γ phase forms to partially accommodate the 24% change in unit cell volume between the α and β phases during hydriding and dehydriding. The α, γ and β phases coexist at the nanoscopic level.
Resumo:
This work was focused on studies of the metal hydride materials having a potential in building hydrogen storage systems with high gravimetric and volumetric efficiencies of H storage and formed / decomposed with high rates of hydrogen exchange. In situ diffraction studies of the metal-hydrogen systems were explored as a valuable tool in probing both the mechanism of the phase-structural transformations and their kinetics. Two complementary techniques, namely Neutron Powder Diffraction (NPD) and Synchrotron X-ray diffraction (SR XRD) were utilised. High pressure in situ NPD studies were performed at D2 pressures reaching 1000 bar at the D1B diffractometer accommodated at Institute Laue Langevin, Grenoble. The data of the time resolved in situ SR XRD were collected at the Swiss Norwegian Beam Lines, ESRF, Grenoble in the pressure range up to 50 bar H2 at temperatures 20-400°C. The systems studied by NPD at high pressures included deuterated Al-modified Laves-type C15 ZrFe2-xAlx intermetallics with x = 0.02; 0.04 and 0.20 and the CeNi5-D2 system. D content, hysteresis of H uptake and release, unit cell expansion and stability of the hydrides systematically change with Al content. Deuteration exhibited a very fast kinetics; it resulted in increase of the unit cells volumes reaching 23.5 % for ZrFe1.98Al0.02D2.9(1) and associated with exclusive occupancy of the Zr2(Fe,Al)2 tetrahedra. For CeNi5 deuteration yielded a hexahydride CeNi5D6.2 (20°C, 776 bar D2) and was accompanied by a nearly isotropic volume expansion reaching 30.1% (∆a/a=10.0%; ∆c/c=7.5%). Deuterium atoms fill three different interstitial sites including Ce2Ni2, Ce2Ni3 and Ni4. Significant hysteresis was observed on the first absorption-desorption cycle. This hysteresis decreased on the absorption-desorption cycling. A different approach to the development of H storage systems is based on the hydrides of light elements, first of all the Mg-based ones. These systems were studied by SR XRD. Reactive ball milling in hydrogen (HRBM) allowed synthesis of the nanostructured Mg-based hydrides. The experimental parameters (PH2, T, energy of milling, ball / sample ratio and balls size), significantly influence rate of hydrogenation. The studies confirmed (a) a completeness of hydrogenation of Mg into MgH2; (b) indicated a partial transformation of the originally formed -MgH2 into a metastable -MgH2 (a ratio / was 3/1); (c) yielded the crystallite size for the main hydrogenation product, -MgH2, as close to 10 nm. Influence of the additives to Mg on the structure and hydrogen absorption/desorption properties and cycle behaviour of the composites was established and will be discussed in the paper.
Resumo:
Phase behavior of CO2 confined in porous fractal silica with volume fraction of SiO2 φs = 0.15 was investigated using small-angle neutron scattering (SANS) and ultrasmall-angle neutron scattering (USANS) techniques. The range of fluid densities (0<(FCO2)bulk<0.977 g/cm3) and temperatures (T=22 °C, 35 and 60 °C) corresponded to gaseous, liquid, near critical and supercritical conditions of the bulk fluid. The results revealed formation of a dense adsorbed phase in small pores with sizes D<40 A° at all temperatures. At low pressure (P <55 bar, (FCO2)bulk <0.2 g/cm3) the average fluid density in pores may exceed the density of bulk fluid by a factor up to 6.5 at T=22 °C. This “enrichment factor” gradually decreases with temperature, however significant fluid densification in small pores still exists at temperature T=60°C, i.e., far above the liquid-gas critical temperature of bulk CO2 (TC=31.1 °C). Larger pores are only partially filled with liquid-like adsorbed layer which coexists with unadsorbed fluid in the pore core. With increasing pressure, all pores become uniformly filled with the fluid, showing no measurable enrichment or depletion of the porous matrix with CO2.
Resumo:
The fact that nature provides specific enzymes to selectively remove superoxide (O2.−) from aerobic organisms, namely, the superoxide dismutase enzymes,1 has led to the suggestion that this radical ion may cause the oxidative damage associated with degradative disease and aging.2 Intriguingly, however, superoxide itself is relatively unreactive toward most cellular components, which suggests that dismutase enzymes may ultimately protect the cell against more pernicious oxidants formed from superoxide. As such, there is increasing interest in the endogenous chemistry of superoxide and the pathways by which it might beget more reactive oxygen species. Protonation of superoxide to form the hydroperoxyl radical (HOO.) and dismutation of the same species to hydrogen peroxide (HOOH), with subsequent metal-catalyzed reduction to the hydroxyl radical (HO.), are well-characterized processes in which both the HOO. and HO. radicals are significantly more reactive than their common progenitor.2 Recent examples, however, have also linked superoxide to the putative production of singlet oxygen3 and ozone,4, 5 although the definitive characterization of these chemistries in the cellular milieu has proved challenging
Resumo:
Neutral C3O has been prepared by collision induced neutralisation of the precursor radical anion formed by the reaction C-=C-CO-OEt --> C3O-. +EtO. The similar neutralisaaion reionisation (-NR+) and charge reversal (CR) spectra of C3O-. indicate that the potential surfaces of C3O and C3O+. show favourable vertical Franck-Condon overlap, This suggests that the bond connectivities of anion, neutral and cation C3O are the same. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
Capture of an electron by tetracyanoethylene oxide can initiate a number of decomposition pathways. One of these decompositions yields [(NC)3C]− as the ionic product. Ab initio calculations (at the B3LYP/6-31+G∗ level of theory) indicate that the formation of [(NC)3C]− is initiated by capture of an electron into the LUMO of tetracyanoethylene oxide to yield the anion radical [(NC)2C–O–C(CN)2]−· that undergoes internal nucleophilic substitution to form intermediate [(NC)3C–OCCN]−·. This intermediate dissociates to form [(NC)3C]− (m/z 90) as the ionic product. The radical (NC)3C· has an electron affinity of 4.0 eV (385 kJ mol−1). Ab initio calculations show that [(NC)3C]− is trigonal planar with the negative charge mainly on the nitrogens. A pictorial representation of this structure is the resonance structure formed from three degenerate contributing structures (NC)2–CCN−. The other product of the reaction is nominally (NCCO)·, but there is no definitive experimental evidence to indicate whether this radical survives intact, or decomposes to NC· and CO. The overall process [(NC)2C–O–C(CN)2]−· → [(NC)3C]− + (NCCO)· is calculated to be endothermic by 21 kJ mol−1 with an overall barrier of 268 kJ mol−1.
Resumo:
The dicoordinated borinium ion, dihydroxyborinium, B(OH)(2)(+) is generated from methyl boronic acid CH3B(OH)(2) by dissociative electron ionization and its connectivity confirmed by collisional activation. Neutralization-reionization (NR) experiments on this ion indicate that the neutral B(OH)(2) radical is a viable species in the gas phase. Both vertical neutralization of B(OH)(2)(+) and reionization of B(OH)(2) in the NR experiment are, however, associated with particularly unfavorable Franck-Condon factors. The differences in adiabatic and vertical electron transfer behavior can be traced back to a particular pi stabilization of the cationic species compared to the sp(2)-type neutral radical. Thermochemical data on several neutral and cationic boron compounds are presented based on calculations performed at the G2 level of theory.
Resumo:
Theoretical calculations of the C3HO potential surface at the CCSD(T)/aug-cc-pVDu/B3LYP/6-31G* level indicate that the three radicals HCCCO, CCCHO, and (cyclo-C3H)=O are stable, with HCCCO being the most stable of the three. A fourth isomer, CCHCO, is unstable with respect to cyclization to (cyclo-C3H)=O. Two isomers have been prepared by neutralization of charged precursors, formed as follows: (i) HCCCO, by HC drop C-C(O)-O+(H)(Me) --> HC3O+ + MeOH, and (ii) C2CHO, by (a) Me3SiC drop C-CHO + HO- --> C- drop C-CHO + Me3SiOH and (b) C- drop C-CH(OH)-C drop CH --> C- drop C-CHO + C2H2. A comparison of the CR and -NR+ spectra of -C2CHO indicate that C2CHO is (partially) rearranging to an isomer that shows significant formation of CO.(+) in the -NR+ spectrum of the anion. Ab initio calculations indicate that HCCCO is the product of the isomerism and that a proportion of these isomerized neutrals dissociate to CO and C2H. The neutral HCCCO may be formed by (i) synchronous rearrangement of C2CHO and/or (ii) stepwise rearrangement of C2CHO through (cyclo-C3H)=O. The second of these processes should have the higher rate, as it has the lower barrier in the rate-determining step and the higher Arrhenius pre-exponential A factor.
Resumo:
The ion PhCO2--CHPh, upon collision activation, undergoes competitive losses of CO and CO2 of which the former process produces the base peak of the spectrum. Product ion and substituent effect (Hammett) studies indicate that PhCO2--CHPh cyclises to a deprotonated hydroxydiphenyloxirane which ring opens to PhCOCH(O-)Ph. This anion then undergoes an anionic 1,2-Wittig type rearrangement {through [PhCO- (PhCHO)]} to form Ph2CHO- and CO. The mechanism of the 1,2-rearrangement has been probed by an ab initio study [at MP4(SDTQ)/6-31++G(d,p) level] of the model system HCOCH2O- →; MeO- + CO The analogous system RCO2--CHPh (R = alkyl) similarly loses CO, and the migratory aptitudes of the alkyl R groups in this reaction are Bu′ > Me > Et ∼Pri). This trend correlates with the order of anion basicities (i.e. the order of ΔG○acid values of RH), supporting the operation of an anion migration process. The loss of CO2 from PhCO2--CHPh yields Ph2CH- as the anionic product: several mechanistic scenarios are possible, one of which involves an initial ipso nucleophilic substitution.
Resumo:
The ortho, meta and para anions of methyl benzoate may be made in the source of a mass spectrometer by the S(N)2(Si) reactions between HO- and methyl (o-, m-, and p-trimethylsilyl)benzoate respectively. All three anions lose CO upon collisional activation to form the ortho anion of anisole in the ratio ortho>>meta > para. The rearrangement process is charge directed through the ortho anion. Theoretical calculations at the B3LYP/6-311++G(d,p)//HF/6-31+G(d) level of theory indicate that the conversion of the meta and para anions to the ortho anion prior to loss of CO involve 1,2-H transfer(s), rather than carbon scrambling of the methoxycarbonylphenyl anion. There are two mechanisms which can account for this rearrangement, viz. (A) cyclisation of the ortho anion centre to the carbonyl group of the ester to give a cyclic carbonyl system in which the incipient methoxide anion substitutes at one of the two equivalent ring carbons of the three membered ring to yield an intermediate which loses CO to give the ortho anion of anisole, and (B) an elimination reaction to give an intermediate benzyne-methoxycarbonyl anion complex in which the MeOCO- species acts as a MeO- donor, which then adds to benzyne to yield the ortho anion of anisole. Calculations at the B3LYP/6-311++G(d,p)//HF/6-31+G(d) level of theory indicate that (i) the barrier in the first step (the rate determining step) of process A is 87 kJ mol(-1) less than that for the synchronous benzyne process B, and (ii) there are more low frequency vibrations in the transition state for benzyne process B than for the corresponding transition state for process A. Stepwise process A has the lower barrier for the rate determining step, and the lower Arrhenius factor: we cannot differentiate between these two mechanisms on available evidence.
Resumo:
We have investigated the gas-phase reaction of the alpha-aminoacetate (glycyl) radical anion (NH2(sic)CHCO2-) with O-2 using ion trap mass spectrometry, quantum chemistry, and statistical reaction rate theory. This radical is found to undergo a remarkably rapid reaction with O-2 to form the hydroperoxyl radical (HO2(sic)) and an even-electron imine (NHCHCO2-), with experiments and master equation simulations revealing that reaction proceeds at the ion molecule collision rate. This reaction is facilitated by a low-energy concerted HO2(sic) elimination mechanism in the NH2CH(OO(sic))CO2- peroxyl radical. These findings can explain the widely observed free-radical-mediated oxidation of simple amino acids to amides plus alpha-keto acids (their imine hydrolysis products). This work also suggests that imines will be the main intermediates in the atmospheric oxidation of primary and secondary amines, including amine carbon capture solvents such as 2-aminoethanol (commonly known as monoethanolamine, or MEA), in a process that avoids the ozone-promoting conversion of (sic)NO to (sic)NO2 commonly encountered in peroxyl radical chemistry.
Resumo:
Alkyl hydroperoxides (ROOH) are attributed a key role in the biochemical oxidation of lipids during oxidative stress.1 In this chemistry ROOH compounds, where the R groups are unsaturated fatty acids, are viewed as transient ntermediates which are readily degraded, due to the lability of the RO-OH bond, to yield potentially genotoxic aldehydes and ketones.2 Generally, the decomposition of alkyl hydroperoxides is thought to be mediated by radical abstraction or electron transfer processes usually involving enzymes, transition metals, or recently, Vitamin C.3 In this paper we present the first unambiguous experimental and computational evidence for base-mediated heterolytic decomposition of simple alkyl hydroperoxides by the mechanism outlined in Scheme 1.