960 resultados para Partículas compósitas Al2O3-Cu
Resumo:
This work describes the development of an alternative acetate bath for the electrochemical codeposition of Ni-Cu-Fe electrodes at low pH that is stable for several weeks and produces electrodes with good performance for chlor-alkali electrolysis. Physical characterization of the electrode surface was made using X ray absorption spectroscopy (XAS), scanning electron microscopy (SEM) and energy dispersive analysis (EDX). The evaluation of the material as electrocatalyst for the hydrogen evolution reaction (her) was carried out in brine solution (160 g L-1 NaCl + 150 g L-1 NaOH) at different temperatures through steady-state polarization curves. The Ni-Cu-Fe electrodes obtained with this bath have shown low overpotentials for the her, around 0.150 V at 353 K, and good stability under continuous long-term operation for 260 hours. One positive aspect of this cathode is that the polarization behavior of the material shows only one Tafel slope over the temperature range of 298 - 353 K.
Resumo:
A reação de eletro-oxidação do metanol foi estudada sobre eletrocatalisadores de Pt/C, PtRu/C e PtMo/C preparados pelo método do ácido fórmico em diferentes composições atômicas. Os produtos da oxidação do metanol foram monitorados pela técnica de DEMS. O desempenho dos catalisadores frente a reação de oxidação do metanol foi estudado através dos perfis voltamétricos e experimentos de cronoamperoometria.
Resumo:
Eletrocatalisadores de Pt/C são preparados por diferentes métodos para a reação de redução de oxigênio em célula a combustível alimentada com H2/O2. Este trabalho mostra a caracterização física e eletroquímica mediante DRX, MET, VC e CP dos catalisadores de Pt/C preparados por diferentes métodos. Os resultados mostraram que a atividade catalítica está correlacionada com a morfologia e o diâmetro médio das partículas de Pt suportadas em carbono de alta área superficial.
Resumo:
The lability of Cd(II), Cr(III), Cu(II), Mn(II) and Pb(II) complexed by humic substances (HSs) was investigated by means of ion exchange on cellulose modified with p-aminobenzoic groups (Cell-PAB), using a batch procedure. The HSs were extracted from water samples using adsorption in a column packed with XAD 8 resin. The metal-HS complexes were prepared by adding solutions containing all the aforementioned metal ions ( Cd(II), Cr(III), Cu(II), Mn(II) and Pb(II) ). The results indicated that the distribution coefficients (Kd) of Cell-PAB decreased with the presence of HSs, and that the lability of metal fractions complexed by HSs decreases in pH values > 4.0, complexation time > 10 h and HS concentration > 500 mg L-1. The metal exchange between HSs and Cell-PAB exhibited the following order of metal ion lability: Cd < Pb < Mn @ Cr < Cu.
Resumo:
This work presents an electroanalytical method for the determination of moxifloxacin (MOXI) in tablets by its interaction with Cu(II) ion and subsequent electrochemical reduction at hanging mercury drop electrode (HMDE). A well-defined reduction peak at -0.21 V vs. Ag/AgCl in Phosphate buffer 0.04 mol L-1 pH 8.0 was observed for the complex reduction MOXI-Cu(II), using square-wave voltammetry (SWV). Using a 10 s of accumulation time at -0.40 V was found a limit detection of 3.60x10-8 mol l-1. The obtained results have shown good agreement with those obtained by spectrophotometric method.
Resumo:
The complexes of 2,6-dimethoxybenzoic acid anion with ions of Co(II), Ni(II), and Cu(II) have been synthesized as polycrystalline solids, and characterized by elemental analysis, spectroscopy, magnetic studies, and also by X-ray diffraction and thermogravimetric measurements. The analysed complexes have following colours: pink for Co(II), green for Ni(II), and blue for Cu(II) compounds. The carboxylate group binds as monodentate, and bidentate bridging and chelating ligands. On heating in air to 1173 K the complexes decompose in four, three or two steps. At first, they dehydrate in one or two steps to anhydrous salts, that next decompose to oxides of the respective metals. The solubility of the investigated dimethoxybenzoates in water at 293 K is of the order of 10-2 mol/dm3. Their magnetic moments were determined in the temperature range of 76-303 K. The results reveal the compounds of Co(II) and Ni(II) to be high-spin complexes and that of Cu(II) to form dimer.
Resumo:
The physico-chemical properties and thermal stability in air of Cu(II) 2,3- , 3,5- and 2,6-dimethoxybenzoates were compared and the influence of the position of -OCH3 substituent on their thermal stability was investigated. The complexes are crystalline, hydrated salts with blue colour. The carboxylate ion is a bidentate chelating or bridging group. The thermal stability of analysed Cu(II) dimethoxybenzoates was studied in the temperature range of 293-1173 K. The positions of methoxy- groups in benzene ring influence the thermal properties of studied complexes. Their different thermal properties are markedly connected with the various influence of inductive, mesomeric and steric effects of -OCH3 substituent on the electron density in benzene ring. The magnetic susceptibilities of the complexes were measured over the range of 76-300 K and the magnetic moments were calculated. The results show that they form dimers.
Resumo:
Physico-chemical properties of 3-chloro-2-nitrobenzoates of Co(II), Ni(II) and Cu(II) were synthesized and studied. The complexes were obtained as mono- and dihydrates with a metal ion to ligand ratio of 1 : 2. All analysed 3-chloro-2-nitrobenzoates are polycrystalline compounds with colours depending on the central ions: pink for Co(II), green for Ni(II) and blue for Cu(II) complexes. Their thermal decomposition was studied in the range of 293 523 K, because it was found that on heating in air above 523 K 3-chloro-2-nitrobenzoates decompose explosively. Hydrated complexes lose crystallization water molecules in one step and anhydrous compounds are formed. The final products of their decomposition are the oxides of the respective transition metals. From the results it appears that during dehydration process no transformation of nitro group to nitrite takes place. The solubilities of analysed complexes in water at 293 K are of the order of 10-4 10-2 mol / dm³. The magnetic moment values of Co2+, Ni2+ and Cu2+ ions in 3-chloro-2-nitrobenzoates experimentally determined at 76 303 K change from 3.67µB to 4.61µB for Co(II) complex, from 2.15µB to 2.87µB for Ni(II) 3-chloro-2-nitrobenzoate and from 0.26µB to 1.39µB for Cu(II) complex. 3-Chloro-2-nitrobenzoates of Co(II) and Ni(II) follow the Curie-Weiss law. Complex of Cu(II) forms dimer.
Resumo:
Este trabalho contempla a síntese e caracterização espectroscópica de dois compostos carbonílicos heterometálicos do tipo [Fe(CO)3(m-CS2)(PPh3 )(CuX)], X = Cl, ClO4. Os dados provenientes da espectroscopia no infravermelho e de RMN de 31P{¹H} foram conclusivos quanto à proposição da geometria octaédrica distorcida ao redor do átomo de ferro (0), como também sobre a natureza bimetálica de ambos compostos. Estes dados esclareceram o modo de coordenação dos grupos carbonilos, da trifenilfosfina (PPh3), bem como a disposição do ligante dissulfeto de carbono em ponte entre os átomos de Fe (0) e Cu (I).
Resumo:
2,4 - Dimethoxybenzoates of Mn(II), Co(II) and Cu(II) have been synthesized as hydrated or anyhydrous polycrystalline solids and characterized by elemental analysis, IR spectroscopy, magnetic studies and X-ray diffraction measurements. They possess the following colours: Mn(II) - white, Co(II) - pink and Cu(II) - blue. The carboxylate groups bind as monodentate, or a symmetrical bidentate bridging ligands and tridentate. The thermal stabilities were determined in air at 293-1173K. When heated the hydrated complexes dehydrate to from anhydous salts which are decomposed to the oxides of respective metals. The magnetic susceptibilites of the 2,4-dimethoxybenzoates were measured over the range 76-303 K and their magnetic moments were calculated. The results reveal the complexes of Mn(II), Co(II) to be high-spin complexes and that of Cu(II) to form dimer.
Resumo:
Physico-chemical properties of 3,4-dimethoxybenzoates of Co(II), Cu(II), La(III) and Nd(III) were studied. The complexes were obtained as hydrated or anhydrous polycrystalline solids with a metal ion-ligand mole ratio of 1 : 2 for divalent ions and of 1 : 3 in the case of trivalent cations. Their colours depend on the kind of central ion: pink for Co(II) complex, blue for Cu(II), white for La(III) and violet for Nd(III) complexes. The carboxylate groups in these compounds are monodentate, bidentate bridging or chelating and tridentate ligands. Their thermal decomposition was studied in the range of 293-1173 K. Hydrated complexes lose crystallization water molecules in one step and form anhydrous compounds, that next decompose to the oxides of respective metals. 3,4 - Dimethoxybenzoates of Co(II) is directly decomposed to the appropriate oxide and that of Nd(III) is also ultimately decomposed to its oxide but with the intemediate formation of Nd2O2CO3.. The magnetic moment values of 3,4-dimethoxybenzoates determined in the range of 76-303 K change from 4.22 µB to 4.61 µB for Co(II) complex , from 0.49 µB to 1.17 µB for Cu(II) complex , and from 2.69 µB to 3.15 µB for Nd(III) complex.
Resumo:
The complexes of 4-chlorophenoxyacetates of Mn(II), Co(II), Ni(II) and Cu(II) have been synthesized as polycrystalline solids, and characterized by elemental analysis, spectroscopy, magnetic studies and also by X-ray diffraction and thermogravimetric measurements. The analysed complexes have the following colours: pink for Co(II), green for Ni(II), blue for Cu(II) and a pale pink for Mn(II) compounds. The carboxylate group binds as monodentate and bidentate ligands. On heating to 1173K in air the complexes decompose in several steps. At first, they dehydrate in one step to anhydrous salts, that next decompose to the oxides of respective metals. Their magnetic moments were determined in the range of 76-303K. The results reveal them to be high-spin complexes of weak ligand fields.
Resumo:
A reação de precipitação de prata na liga Cu-8%Al-6%Ag foi estudada usando medidas de variação da microdureza com a temperatura e o tempo de envelhecimento, difratometria de raios X (DRX), calorimetria exploratória diferencial (DSC), microscopia eletrônica de varredura (MEV). Os resultados obtidos indicaram que o mecanismo da reação de precipitação da prata é um processo controlado pela difusão da prata e a velocidade desta reação atinge um máximo em torno de 500°C.
Resumo:
The physicochemical properties of 2,4-, and 3,4- dimethoxybenzoates of Cu(II), Co(II) and Nd(III) were studied and compared to observe the -OCH3 substituent positions in benzene ring on the character of complexes. The analysed compounds are crystalline hydrated or anhydrous salts with colours depending on the kind of central ions: blue for Cu(II), pink for Co(II) and violet for Nd(III) complexes. The carboxylate groups bind as monodentate, bidentate bridging or chelating and even tridentate ligands. Their thermal stabilities were studied in air at 293-1173K. When heated the hydrated complexes release the water molecules and form anhydrous compounds which are then decomposed to the oxides of respective metals. Their magnetic moment values were determined in the range of 76-303K. The results reveal the compounds of Nd(III) and Co(II) to be the high-spin and that of Cu(II) forms dimer. The various positions of -OCH3 groups in benzene ring influence some of physicochemical properties of analysed compounds.
Resumo:
The complexes of 2-methoxyhenoxyacetates of Mn(II), Co(II), Ni(II) and Cu(II)with the general formula: M(C9H9O4)3·4H2O, where M(II) = Mn, Co, Ni and Cu have been synthesized and characterized by elemental analysis, IR spectroscopy, magnetic and thermogravimetric studies and also X-ray diffraction measurements. The complexes have colours typical for M(II) ions (Mn(II) - a pale pink, Co(II) - pink, Ni(II) - green, and Cu(II) - blue). The carboxylate group binds as monodentate and bidentate ligands. On heating to 1273K in air the complexes decompose in the same way. At first, they dehydrate in one step to anhydrous salts, that next decompose to the oxides of respective metals with the intermediate formation of the oxycarbonates. Their solubility in water at 293K is of the order of 10-5 mol·dm-3. The magnetic moments of analysed complexes were determined in the range of 76-303K. The results reveal them to be high-spin complexes of weak ligand fields.