954 resultados para Palladium intermediates


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on the report for the “Project III” unit of the PhD programme on Technology Assessment under the supervision of Prof. António B. Moniz. This report was discussed also at the 2nd Winter School on Technology Assessment held at Universidade Nova de Lisboa, Caparica Campus, Portugal on December 2011.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

J Biol Inorg Chem (2011) 16:183–194 DOI 10.1007/s00775-011-0753-3

Relevância:

10.00% 10.00%

Publicador:

Resumo:

J Biol Inorg Chem (2011) 16:209–215 DOI 10.1007/s00775-010-0717-z

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on the report for “Project IV” unit of the PhD programme on Technology Assessment (Doctoral Conference) at Universidade Nova de Lisboa (December 2011). This thesis research has the supervision of António Moniz (FCT-UNL and ITAS-KIT) and Armin Grunwald (Karlsruhe Institute of Technology-ITAS, Germany). Other members of the thesis committee are Mário Forjaz Secca (FCT-UNL) and Femke Nijboer (University of Twente, Netherlands).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Bioorgânica

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AraL from Bacillus subtilis is a member of the ubiquitous haloalkanoate dehalogenase, HAD, superfamily. The araL gene has been cloned, over-expressed in Escherichia coli and its product purified to homogeneity. The enzyme displays phosphatase activity, which is optimal at neutral pH (7.0) and 65 °C. Substrate screening and kinetic analysis showed AraL to have low specificity and catalytic activity towards several sugar phosphates, which are metabolic intermediates of the glycolytic and pentose phosphate pathways. Based on substrate specificity and gene context within the arabinose metabolic operon, a putative physiological role of AraL in detoxification of accidental accumulation of phosphorylated metabolites has been proposed. The ability of AraL to catabolise several related secondary metabolites requires regulation at the genetic level. Here, by site- directed mutagenesis, we show that AraL production is regulated by a structure in the translation initiation region of the mRNA, which most probably blocks access to the ribosome-binding site, preventing protein synthesis. Members of HAD subfamily IIA and IIB are characterised by a broad-range and overlapping specificity that anticipated the need for regulation at the genetic level. In this study we provide evidence for the existence of a genetic regulatory mechanism controlling AraL production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pharmaceuticals and personal care products (PPCPs) are widely used on a daily basis. After their usage they reach the wastewater treatment plants (WWTPs). These compounds have different physico-chemical characteristics, which makes them difficult to completely remove in the WWTPs, througth conventional treatments. Currently, there is no legislation regarding PPCPs thresholds in effluent discharge. But, even at vestigial concentrations, these compounds enclose environmental risks due to, e.g., endocrine disruption potential. There is a need of alternative techniques for their removal in WWTPs. The main goal of this work was to assess the use of electrodialytic (ED) process to remove PPCPs from the effluent to be discharged. A two-compartment ED cell was used testing (i) the effluent position in the cell (anode and cathode compartment); (ii) the use of anion (AEM) and cation exchange membrane (CEM); (iii) the treatment period (6, 12 and 24 hours); (iv) effluent recirculation and current steps; (v) the feasibility of sequential treatments. Phosphorus (P) removal from effluent and energetic costs associated to the process were also evaluated. Five PPCPs were studied – caffeine (CAF), bisphenol A (BPA), 17 β-estradiol (E2), ethinyl estradiol (EE2) and oxybenzone (MBPh). The ED process showed to be effective in the removal when effluent is in the anode compartment. Oxidation is suggested to be the main removal process, which was between 88 and 96%, for all the compounds, in 6 hours. Nevertheless, the presence of intermediates and/or by-products was also observed in some cases. Effluent recirculation should have a retention time in the ED cell big enough to promote removal whereas the current steps (effluent in anode compartment) slightly increased removal efficiencies (higher than 80% for all PPCPs). The sequential set of ED treatment (effluent in anode compartment) showed to be effective during both periods with a removal percentage between 80 and 95% and 73 to 88% in the case of AEM and CEM, respectively. Again, the main removal process is strongly suggested to be oxidation in the anode compartment. However, there was an increase of BOD5 and COD, which might be explained by effluent spiking, these parameters limiting the effluent discharge. From these treatments, the use of AEM, enhanced the P removal from effluent to minimize risk of eutrophication. Energetic costs of the best set-up (6 hours) are approximately 0,8€/m3 of wastewater, a value considered low, attending to the prices of other treatment processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramente em Ciências (área de especialização em Química).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the reductive intramolecular cyclization of bromopropargyl ethers derivatives, catalyzed by electrogenerated (1,4,8,11-tetramethyl-1,4,8,11-tetraaza-cyclotetradecane)nickel(I), [Ni(tmc)]+ as the catalysts in N,N,N-trimethyl-N-(2- hydroxyethyl)ammonium bis(trifluoromethylsulfonyl)imide,[N1 1 1 2(OH)][NTf2] and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C2mim][NTf2] by cyclic voltammetry and controlled-potential electrolysis. The results show that the reaction leads to the formation of the expected cyclic compounds, which are important intermediates in the synthesis of natural products with possible biological activities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências (Especialidade em Química)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DNA strand-breaks (SBs) with non-ligatable ends are generated by ionizing radiation, oxidative stress, various chemotherapeutic agents, and also as base excision repair (BER) intermediates. Several neurological diseases have already been identified as being due to a deficiency in DNA end-processing activities. Two common dirty ends, 3'-P and 5'-OH, are processed by mammalian polynucleotide kinase 3'-phosphatase (PNKP), a bifunctional enzyme with 3'-phosphatase and 5'-kinase activities. We have made the unexpected observation that PNKP stably associates with Ataxin-3 (ATXN3), a polyglutamine repeat-containing protein mutated in spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph Disease (MJD). This disease is one of the most common dominantly inherited ataxias worldwide; the defect in SCA3 is due to CAG repeat expansion (from the normal 14-41 to 55-82 repeats) in the ATXN3 coding region. However, how the expanded form gains its toxic function is still not clearly understood. Here we report that purified wild-type (WT) ATXN3 stimulates, and by contrast the mutant form specifically inhibits, PNKP's 3' phosphatase activity in vitro. ATXN3-deficient cells also show decreased PNKP activity. Furthermore, transgenic mice conditionally expressing the pathological form of human ATXN3 also showed decreased 3'-phosphatase activity of PNKP, mostly in the deep cerebellar nuclei, one of the most affected regions in MJD patients' brain. Finally, long amplicon quantitative PCR analysis of human MJD patients' brain samples showed a significant accumulation of DNA strand breaks. Our results thus indicate that the accumulation of DNA strand breaks due to functional deficiency of PNKP is etiologically linked to the pathogenesis of SCA3/MJD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fat, oils, and grease present in complex wastewater can be readily converted to methane, but the energy potential of these compounds is not always recyclable, due to incomplete degradation of long chain fatty acids (LCFA) released during lipids hydrolysis. Oleate (C18:1) is generally the dominant LCFA in lipid-containing wastewater, and its conversion in anaerobic bioreactors results in palmitate (C16:0) accumulation. The reason why oleate is continuously converted to palmitate without further degradation via β-oxidation is still unknown. In this work, the influence of methanogenic activity in the initial conversion steps of unsaturated LCFA was studied in 10 bioreactors continuously operated with saturated or unsaturated C16- and C18-LCFA, in the presence or absence of the methanogenic inhibitor bromoethanesulfonate (BrES). Saturated Cn-2-LCFA accumulated both in the presence and absence of BrES during the degradation of unsaturated Cn-LCFA, and represented more than 50\% of total LCFA. In the presence of BrES further conversion of saturated intermediates did not proceed, not even when prolonged batch incubation was applied. As the initial steps of unsaturated LCFA degradation proceed uncoupled from methanogenesis, accumulation of saturated LCFA can be expected. Analysis of the active microbial communities suggests a role for facultative anaerobic bacteria in the initial steps of unsaturated LCFA biodegradation. Understanding this role is now imperative to optimize methane production from LCFA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado em Medicinal Chemistry

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado em Química Medicinal

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estudi elaborat a partir d’una estada a la Plataforma Solar de Almería entre desembre del 2006 i gener del 2007. S’ha dut a terme la degradació en planta pilot dels colorants reactius Procion Red H-E7B i Cibacron Red FN-R mitjançant el procés de foto-Fenton aplicat com a tractament únic i com a pretractament d’un procés biològic. El procés de foto-Fenton, assistit amb llum solar, es va realitzar en un fotoreactor solar tipus Col•lector Parabòlic Compost (CPC) i el tractament biològic en un Reactor de Biomassa Immobilitzada (RBI). Com a punt de partida, i amb l’objectiu d’estudiar la reproductibilitat del sistema, es van prendre resultats obtinguts d’experiments realitzats prèviament a escala de laboratori i amb llum artificial. El paràmetre Carboni Orgànic Total (COT) es va emprar com a indicador de l’eliminació dels colorants i dels seus intermedis. En aplicar únicament el procés de foto-Fenton com a tractament, concentracions de 10 mg•l-1 de Fe (II) i 250 mg•l-1 de H2O2 per degradar 250 mg•l-1 Procion Red H-E7B, i de 20 mg•l-1 de Fe (II) i 500 mg•l-1 de H2O2 per degradar 250 mg•l-1 Cibacron Red FN-R, van reproduir els resultants obtinguts al laboratori, amb uns nivells d’eliminació de COT del 82 i 86%, respectivament. A més, l’ús beneficiós de la llum solar en el procés de foto-Fenton, juntament amb la configuració del CPC, van incrementar la velocitat de degradació respecte als resultats previs, permetent la reducció de la concentració de Fe (II) de 10 a 2 mg•l-1 (Procion Red H-E7B) i de 20 a 5 mg•l-1 (Cibacron Red FN-R) sense pèrdues d’efectivitat. D’altre banda, el sistema combinat foto-Fenton/tractament biològic en planta pilot, unes concentracions d’oxidant de 225 mg•l-1 H2O2 per Cibacron Red FN-R i 65 mg•l-1 H2O2 per Procion Red H-E7B van ser suficients per generar solucions intermèdies biodegradables i alimentar així el RBI, millorant inclús els resultats obtinguts prèviament al laboratori.