989 resultados para Organic wastes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structure determination of the anhydrous form of any organic compound has been a challenge because of solvent incorporation during crystallization. A device to grow anhydrous forms of low melting organic solids based on vaporization and condensation by a gradient cooling technique has been designed. Its utility has been evaluated by growing anhydrous forms of ciprofloxacin, midazolam, and ofloxacin. Ciprofloxacin crystallizes in triclinic P (1) over bar, midazolam in monoclinic P2(1)/n, and ofloxacin in the C2/c space group. Comparative studies on the conformational features with solvated structure show no significant variation in the aromatic moieties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work diketopyrrolopyrrole based copolymers (PDPP-BBT and TDPP-BBT) containing a donor-acceptor structural unit have been explored as organic Sensitizers for quasi-solid state dye Sensitized solar cells. Polymer-sensitized solar cells (PSSC) fabricated utilizing PDPP-BBT and TDPP-BBT as the active layer resulted in a typical power conversion efficiency of 1.43% and 2.41%, respectively. The power conversion efficiency of PSSCs based on TDPP-BBT With use of TiCl4-modified TiO2 photoanode was about 3.06%, attributed to the reduced back recombination reaction and more charge carriers in the external Circuit.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the design and development of a thermoelectric gas sensor suitable for the detection of Volatile Organic Compounds (VOCs). In order to enhance the seebeck coefficient of the sensor, we have deposited chromium metal films on a limited area of the glass substrate. Tin oxide thin film was deposited on top of these metal films. The resulting metal/semiconductor film exhibits a high seebeck coefficient of 400 mu V/ degrees C. Platinum catalyst film deposited on the oxide film to create the necessary temperature gradient resulted in further enhancement in the sensitivity of the sensor to target gases. The sensor shows high sensitivity to ppm-change in the concentration of target hydrocarbons at a relatively low temperature of 120 degrees C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the foremost design considerations in microelectronics miniaturization is the use of embedded passives which provide practical solution. In a typical circuit, over 80 percent of the electronic components are passives such as resistors, inductors, and capacitors that could take up to almost 50 percent of the entire printed circuit board area. By integrating passive components within the substrate instead of being on the surface, embedded passives reduce the system real estate, eliminate the need for discrete and assembly, enhance electrical performance and reliability, and potentially reduce the overall cost. Moreover, it is lead free. Even with these advantages, embedded passive technology is at a relatively immature stage and more characterization and optimization are needed for practical applications leading to its commercialization.This paper presents an entire process from design and fabrication to electrical characterization and reliability test of embedded passives on multilayered microvia organic substrate. Two test vehicles focusing on resistors and capacitors have been designed and fabricated. Embedded capacitors in this study are made with polymer/ceramic nanocomposite (BaTiO3) material to take advantage of low processing temperature of polymers and relatively high dielectric constant of ceramics and the values of these capacitors range from 50 pF to 1.5 nF with capacitance per area of approximately 1.5 nF/cm(2). Limited high frequency measurement of these capacitors was performed. Furthermore, reliability assessments of thermal shock and temperature humidity tests based on JEDEC standards were carried out. Resistors used in this work have been of three types: 1) carbon ink based polymer thick film (PTF), 2) resistor foils with known sheet resistivities which are laminated to printed wiring board (PWB) during a sequential build-up (SBU) process and 3) thin-film resistor plating by electroless method. Realization of embedded resistors on conventional board-level high-loss epoxy (similar to 0.015 at 1 GHz) and proposed low-loss BCB dielectric (similar to 0.0008 at > 40 GHz) has been explored in this study. Ni-P and Ni-W-P alloys were plated using conventional electroless plating, and NiCr and NiCrAlSi foils were used for the foil transfer process. For the first time, Benzocyclobutene (BCB) has been proposed as a board level dielectric for advanced System-on-Package (SOP) module primarily due to its attractive low-loss (for RF application) and thin film (for high density wiring) properties.Although embedded passives are more reliable by eliminating solder joint interconnects, they also introduce other concerns such as cracks, delamination and component instability. More layers may be needed to accommodate the embedded passives, and various materials within the substrate may cause significant thermo -mechanical stress due to coefficient of thermal expansion (CTE) mismatch. In this work, numerical models of embedded capacitors have been developed to qualitatively examine the effects of process conditions and electrical performance due to thermo-mechanical deformations.Also, a prototype working product with the board level design including features of embedded resistors and capacitors are underway. Preliminary results of these are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single crystals of a symmetrically substituted molecule, 1,3,5-triazine-2,4,6-triaminehexaacetic acid, (TTHA) and its Ca2+ salt have been synthesized, the analysis of which reveals the existence of novel channel type cavities and helical packing organizations in the crystals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phase equilibrium studies of organic system, involving resorcinol (R) and p-dimethylaminobenzaldehyde (DMAB), reveal the formation of a 1:1 molecular complex with two eutectics. The heat of mixing, entropy of fusion, roughness parameter, interfacial energy, and the excess thermodynamic functions were calculated based on enthalpy of fusion data determined via differential scanning calorimetric (DSC) method. X-ray powder diffraction studies confirm that the eutectics are not simple mechanical mixture of the components under investigation. The spectroscopic investigations (IR and NMR) suggest the occurrence of hydrogen bonding between the components forming the molecular complex. The dielectric measurements, carried out on hot-pressed addition compound (molecular complex), show higher dielectric constant at 320 K than that of individual components. The microstructural investigations of eutectic and addition compound indicate dendritic and faceted morphological features. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The discrepancies between the non-interacting models and experimental results for conjugated systems is highlighted in this brief review. The interacting model hamiltonians correctly give the forbidden singlet state below the optical gap in polyenes and also explain both the nonvanishing optical gap in polyacetylenes and the vanishing optical gap in symmetric cyanine dyes. The negative spin densities in polyene radicals is also understood in terms of a correlated picture. The role of electron-electron interactions in other strongly correlated systems, such as polydiacetylene and mixed and segregated stack charge transfer solids, are also briefly discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polarizabilities and Hyperpolarizabilities of conjugated organic chains are calculated using correlated model Hamiltonians. While correlations reduce the Polarizabilities and extend the range of linear response, the Hyperpolarizabilities essentially are unaffected by the same. This explains the apparently large Hyperpolarizabilities of conjugated electronic systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The metal-organic frameworks, in recent years, show a variety of new developments that includes new methods of preparation, post synthesis modifications and novel class of compounds. Though most of the developments happened in the carboxylate based family of compounds, the other related systems are also equally interesting. In this article,we have highlighted some of the developments that have taken place in the family of non-carboxylate metal-organic frameworks. We have also highlighted some of the recent attempts at modifying the surfaces and pores of the MOFs by careful chemical manipulations. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molybdenum-doped TiO2 organic-inorganic hybrid nanoparticles were synthesized under mild hydrothermal conditions by in situ surface modification using n-butylamine. This was carried out at 150 degrees C at autogeneous pressure over 18 h. n-Butylamine was selected as a surfactant since it produced nanoparticles of the desired size and shape. The products were characterized using powder X-ray diffraction, Fourier transform infrared spectrometry, dynamic light-scattering spectroscopy, UV-Vis spectroscopy and transmission electron microscopy. Chemical oxygen demand was estimated in order to determine the photodegradation efficiency of the molybdenum-doped TiO2 hybrid nanoparticles in the treatment of pharmaceutical effluents. It was found that molybdenum-doped TiO2 hybrid nanoparticles showed higher photocatalytic efficiency than untreated TiO2 nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dioxins are organic toxicants that are known to impair tooth development, especially dental hard tissue formation. The most toxic dioxin congener is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Further, clinical studies suggest that maternal smoking during pregnancy can affect child s tooth development. One of the main components of tobacco smoke is the group of non-halogenated polycyclic aromatic hydrocarbons (PAHs), a representative of which is 7,12-dimethylbenz[a]anthracene (DMBA). Tributyltin (TBT), an organic tin compound, has been shown to impair bone mineralization in experimental animals. In addition to exposure to organic toxicants, a well-established cause for enamel hypomineralization is excess fluoride intake. The principal aim of this thesis project was to examine in vitro if, in addition to dioxins, other organic environmental toxicants, like PAHs and organic tin compounds, have adverse effects on tooth development, specifically on formation and mineralization of the major dental hard tissues, the dentin and the enamel. The second aim was to investigate in vitro if fluoride could intensify the manifestation of the detrimental developmental dental effects elicited by TCDD. The study was conducted by culturing mandibular first and second molar tooth germs of E18 NMRI mouse embryos in a Trowell-type organ culture and exposing them to DMBA, TBT, and sodium fluoride (NaF) and/or TCDD at various concentrations during the secretory and mineralization stages of development. Specific methods used were HE-staining for studying cell and tissue morphology, BrdU-staining for cell proliferation, TUNEL-staining for apoptosis, and QPCR, in situ hybridization and immunohistochemistry for the expressions of selected genes associated with mineralization. This thesis work showed that DMBA, TBT, TCDD and NaF interfere with dentin and enamel formation of embryonic mouse tooth in vitro, and that fluoride can potentiate the harmful effect of TCDD. The results suggested that adverse effects of TBT involve altered expression of genes associated with mineralization, and that DMBA and TBT as well as NaF and TCDD together primarily affect dentin mineralization. Since amelogenesis does not start until mineralization of dentin begins, impaired enamel matrix secretion could be a secondary effect. Dioxins, PAHs and organotins are all liposoluble and can be transferred to the infant by breast-feeding. Since doses are usually very low, developmental toxicity on most of the organs is difficult to indentify clinically. However, tooth may act as an indicator of exposure, since the major dental hard tissues, the dentin and the enamel, are not replaced once they have been formed. Thus, disturbed dental hard tissue formation raises the question of more extensive developmental toxicity.