927 resultados para Nucleophilic attack
Resumo:
This study aimed to detect and analyse regular patterns of play in fast attack of football teams, through the combination of the sequential analysis technique and semi-structured interviews to experienced first League Portuguese coaches. The sample included 36 games (12 games of the respective national leagues per team) of the F.C. Barcelona, Inter Milan, and Manchester United teams that were coded with the observational instrument tool developed by Sarmento et al. (2010) and the data analysed through sequential analysis with the software SDIS-GSEQ 5.0. Based on the detected patterns, semi-structured interviews were carried out to 8 expert high-performance football coaches and data were analysed through the content analysis technique using the software NVivo 10. The detected patterns of play revealed specific characteristics of the teams under study. The combination of the results of sequential analysis with the qualitative interviews to the professional coaches proved to be very fruitful in this game the analysis of scope, allowing reconcile scientific knowledge with practical interpretation of coaches who develop their tasks in the field.
Resumo:
This thesis presents security issues and vulnerabilities in home and small office local area networks that can be used in cyber-attacks. There is previous research done on single vulnerabilities and attack vectors, but not many papers present full scale attack examples towards LAN. First this thesis categorizes different security threads and later in the paper methods to launch the attacks are shown by example. Offensive security and penetration testing is used as research methods in this thesis. As a result of this thesis an attack is conducted using vulnerabilities in WLAN, ARP protocol, browser as well as methods of social engineering. In the end reverse shell access is gained to the target machine. Ready-made tools are used in the attack and their inner workings are described. Prevention methods are presented towards the attacks in the end of the thesis.
Resumo:
Direct nucleophilic substitution reactions of allylic alcohols are environmentally friendly, since they generate only water as a byproduct, allowing access to new allylic compounds. This reaction has, thus, attracted the interest of the chemical community and several strategies have been developed for its successful accomplishment. This review gathers the latest advances in this methodology involving SN1-type reactions.
Resumo:
Three-dimensional direct numerical simulations (DNS) have been performed on a finite-size hemispherecylinder model at angle of attack AoA = 20◦ and Reynolds numbers Re = 350 and 1000. Under these conditions, massive separation exists on the nose and lee-side of the cylinder, and at both Reynolds numbers the flow is found to be unsteady. Proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) are employed in order to study the primary instability that triggers unsteadiness at Re = 350. The dominant coherent flow structures identified at the lower Reynolds number are also found to exist at Re = 1000; the question is then posed whether the flow oscillations and structures found at the two Reynolds numbers are related. POD and DMD computations are performed using different subdomains of the DNS computational domain. Besides reducing the computational cost of the analyses, this also permits to isolate spatially localized oscillatory structures from other, more energetic structures present in the flow. It is found that POD and DMD are in general sensitive to domain truncation and noneducated choices of the subdomain may lead to inconsistent results. Analyses at Re = 350 show that the primary instability is related to the counter rotating vortex pair conforming the three-dimensional afterbody wake, and characterized by the frequency St ≈ 0.11, in line with results in the literature. At Re = 1000, vortex-shedding is present in the wake with an associated broadband spectrum centered around the same frequency. The horn/leeward vortices at the cylinder lee-side, upstream of the cylinder base, also present finite amplitude oscillations at the higher Reynolds number. The spatial structure of these oscillations, described by the POD modes, is easily differentiated from that of the wake oscillations. Additionally, the frequency spectra associated with the lee-side vortices presents well defined peaks, corresponding to St ≈ 0.11 and its few harmonics, as opposed to the broadband spectrum found at the wake.
Resumo:
Three-dimensional Direct Numerical Simulations combined with Particle Image Velocimetry experiments have been performed on a hemisphere-cylinder at Reynolds number 1000 and angle of attack 20◦. At these flow conditions, a pair of vortices, so-called “horn” vortices, are found to be associated with flow separation. In order to understand the highly complex phenomena associated with this fully threedimensional massively separated flow, different structural analysis techniques have been employed: Proper Orthogonal and Dynamic Mode Decompositions, POD and DMD, respectively, as well as criticalpoint theory. A single dominant frequency associated with the von Karman vortex shedding has been identified in both the experimental and the numerical results. POD and DMD modes associated with this frequency were recovered in the analysis. Flow separation was also found to be intrinsically linked to the observed modes. On the other hand, critical-point theory has been applied in order to highlight possible links of the topology patterns over the surface of the body with the computed modes. Critical points and separation lines on the body surface show in detail the presence of different flow patterns in the base flow: a three-dimensional separation bubble and two pairs of unsteady vortices systems, the horn vortices, mentioned before, and the so-called “leeward” vortices. The horn vortices emerge perpendicularly from the body surface at the separation region. On the other hand, the leeward vortices are originated downstream of the separation bubble, as a result of the boundary layer separation. The frequencies associated with these vortical structures have been quantified.
Resumo:
Oligodeoxynucleotides (ODNs) containing latent electrophilic groups can be highly useful in antisense drug development and many other applications such as chemical biology and medicine, where covalent cross-linking of ODNs with mRNA, protein and ODN is required. However, such ODN analogues cannot be synthesized using traditional technologies due to the strongly nucleophilic conditions used in traditional deprotection/cleavage process. To solve this long lasting and highly challenging problem in nucleic acid chemistry, I used the 1,3-dithian-2-yl-methoxycarbonyl (Dmoc) function to protect the exo-amino groups on the nucleobases dA, dC and dG, and to design the linker between the nascent ODN and solid support. These protecting groups and linker are completely stable under all ODN synthesis conditions, but can be readily cleaved under non-nucleophilic and nearly neutral conditions. As a result, the new ODN synthesis technology is universally useful for the synthesis of electrophilic ODNs. The dissertation is mainly comprised of two portions. In the first portion, the development of the Dmoc-based linker for ODN synthesis will be described. The construction of the dT-Dmoc-linker required a total of seven steps to synthesize. The linker was then anchored to the solid support―controlled pore glass (CPG). In the second portion, the syntheses of Dmoc-protected phosphoramidites ODN synthesis monomers including Dmoc-dC-amidite, Dmoc-dA-amidite, Dmoc-dG-amidite are described. The protection of dC and dA with 1,3-dithian-2-yl-methyl 4-nitrophenyl carbonate proceeded smoothly giving Dmoc-dC and Dmoc-dA in good yields. However, when the same acylation procedure was applied for the synthesis of Dmoc-dG, very low yield was obtained. This problem was later solved using a highly innovative and environmentally benign procedure, which is expected to be widely useful for the acylation of the exo-amino groups on nucleoside bases. The reactions to convert the Dmoc-protected nucleosides to phosphoramidite monomers proceeded smoothly with high yields. Using the Dmoc phosphoramidite monomers dA, dC, dG and the commercially available dT, and the Dmoc linker, four ODN sequences were synthesized. In all cases, excellent coupling yields were obtained. ODN deprotection/cleavage was achieved by using non-nucleophilic oxidative conditions. The new technology is predicted to be universally useful for the synthesis of ODNs containing one or more electrophilic functionalities.
Resumo:
2015
Resumo:
Eucalyptus spp genus is economically important to different industry fields. There are pests that damage the development of eucalypts and Glycaspis brimblecombei, a sap-sucking insect, is one of them. Studies about this insect attack to the eucalypts showed preferences. This work aim was to compare the preferences of the insect with thermoanalytical characteristics of different eucalypts (susceptible, less susceptible and resistant to Glycaspis brimblecombei) essential oils. The leaves of six species of Eucalyptus were crushed and the essential oil was extracted using Clevenger apparatus. The Shimadzu DTG-60H was used to analyze the samples. The results showed that the samples from more susceptible eucalypts had total mass loss at about 124ºC to 156ºC, lower than samples from more resistant eucalypts (from 168ºC to 175ºC). Furthermore, the study suggests that the susceptibility or the resistance of eucalypts to the pest may be related to their essential oil composition and concentration of monoterpenes and sesquiterpenes.
Resumo:
Bid opening in e-auction is efficient when a homomorphic secret sharing function is employed to seal the bids and homomorphic secret reconstruction is employed to open the bids. However, this high efficiency is based on an assumption: the bids are valid (e.g., within a special range). An undetected invalid bid can compromise correctness and fairness of the auction. Unfortunately, validity verification of the bids is ignored in the auction schemes employing homomorphic secret sharing (called homomorphic auction in this paper). In this paper, an attack against the homomorphic auction in the absence of bid validity check is presented and a necessary bid validity check mechanism is proposed. Then a batch cryptographic technique is introduced and applied to improve the efficiency of bid validity check.
Resumo:
In this work, we examine unbalanced computation between an initiator and a responder that leads to resource exhaustion attacks in key exchange protocols. We construct models for two cryp-tographic protocols; one is the well-known Internet protocol named Secure Socket Layer (SSL) protocol, and the other one is the Host Identity Protocol (HIP) which has built-in DoS-resistant mechanisms. To examine such protocols, we develop a formal framework based on Timed Coloured Petri Nets (Timed CPNs) and use a simulation approach provided in CPN Tools to achieve a formal analysis. By adopting the key idea of Meadows' cost-based framework and re¯ning the de¯nition of operational costs during the protocol execution, our simulation provides an accurate cost estimate of protocol execution compar- ing among principals, as well as the percentage of successful connections from legitimate users, under four di®erent strategies of DoS attack.
Resumo:
We present the first detailed application of Meadows’s cost-based modelling framework to the analysis of JFK, an Internet key agreement protocol. The analysis identifies two denial of service attacks against the protocol that are possible when an attacker is willing to reveal the source IP address. The first attack was identified through direct application of a cost-based modelling framework, while the second was only identified after considering coordinated attackers. Finally, we demonstrate how the inclusion of client puzzles in the protocol can improve denial of service resistance against both identified attacks.