949 resultados para Nonstructural Glycoprotein
Resumo:
Aspergillus versicolor grown on xylan or xylose produces two beta-xylosidases with differences in biochemical properties and degree of glycosylation. We investigated the alterations in the biochemical properties of these beta-xylosidases after deglycosylation with Endo-H or PNGase F. After deglycosylation, both enzymes migrated faster in PAGE or SDS-PAGE exhibiting the same R(f). Temperature optimum of xylan-induced and xylose-induced beta-xylosidases was 45A degrees C and 40A degrees C, respectively, and 35A degrees C after deglycosylation. The xylan-induced enzyme was more active at acidic pH. After deglycosylation, both enzymes had the same pH optimum of 6.0. Thermal resistance at 55A degrees C showed half-life of 15 min and 9 min for xylose- and xylan-induced enzymes, respectively. After deglycosylation, both enzymes exhibited half-lives of 7.5 min. Native enzymes exhibited different responses to ions, while deglycosylated enzymes exhibited identical responses. Limited proteolysis yielded similar polypeptide profiles for the deglycosylated enzymes, suggesting a common polypeptide core with differential glycosylation apparently responsible for their biochemical and biophysical differences.
Resumo:
The filamentous fungus A. phoenicis produced high levels of beta-D-fructofuranosidase (FFase) when grown for 72 hrs under Solid-State Fermentation (SSF), using soy bran moistened with tap water (1:0.5 w/v) as substrate/carbon source. Two isoforms (I and II) were obtained, and FFase II was purified 18-fold to apparent homogeneity with 14% recovery. The native molecular mass of the glycoprotein (12% of carbohydrate content) was 158.5 kDa with two subunits of 85 kDa estimated by SDS-PAGE. Optima of temperature and pH were 55 degrees C and 4.5. The enzyme was stable for more than 1 hr at 50 degrees C and was also stable in a pH range from 7.0 to 8.0. FFase II retained 80% of activity after storage at 4 degrees C by 200 hrs. Dichroism analysis showed the presence of random and beta-sheet structure. A. phoenicis FFase II was activated by Mn(2+), Mg(2+) and Co(2+), and inhibited by Cu(2+), Hg(2+) and EDTA. The enzyme hydrolyzed sucrose, inulin and raffinose. K(d) and V(max) values were 18 mM and 189 U/mg protein using sucrose as substrate.
Resumo:
We have established a proteoliposome system as an osteoblast-derived matrix vesicle (MV) biomimetic to facilitate the study of the interplay of tissue-nonspecific alkaline phosphatase (TNAP) and NPP1 (nucleotide pyrophosphatase/phosphodiesterase-1) during catalysis of biomineralization substrates. First, we studied the incorporation of TNAP into liposomes of various lipid compositions (i.e. in pure dipalmitoyl phosphatidylcholine (DPPC), DPPC/dipalmitoyl phosphatidylserine (9:1 and 8:2), and DPPC/dioctadecyl-dimethylammonium bromide (9:1 and 8:2) mixtures. TNAP reconstitution proved virtually complete in DPPC liposomes. Next, proteoliposomes containing either recombinant TNAP, recombinant NPP1, or both together were reconstituted in DPPC, and the hydrolysis of ATP, ADP, AMP, pyridoxal-5`-phosphate (PLP), p-nitrophenyl phosphate, p-nitrophenylthymidine 5`-monophosphate, and PP(i) by these proteoliposomes was studied at physiological pH. p-Nitrophenylthymidine 5`-monophosphate and PLP were exclusively hydrolyzed by NPP1-containing and TNAP-containing proteoliposomes, respectively. In contrast, ATP, ADP, AMP, PLP, p-nitrophenyl phosphate, and PPi were hydrolyzed by TNAP-, NPP1-, and TNAP plus NPP1- containing proteoliposomes. NPP1 plus TNAP additively hydrolyzed ATP, but TNAP appeared more active in AMP formation than NPP1. Hydrolysis of PPi by TNAP-, and TNAP plus NPP1- containing proteoliposomes occurred with catalytic efficiencies and mild cooperativity, effects comparable with those manifested by murine osteoblast-derived MVs. The reconstitution of TNAP and NPP1 into proteoliposome membranes generates a phospholipid microenvironment that allows the kinetic study of phosphosubstrate catabolism in a manner that recapitulates the native MV microenvironment.
Resumo:
OBJECTIVE- To determine whether obesity increases platelet reactivity and thrombin activity in patients with type 2 diabetes plus stable coronary artery disease. RESEARCH DESIGN AND METHODS- We assessed platelet reactivity and markers of thrombin generation and activity in 193 patients from nine clinical sites of the Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D). Blood taken at the time of enrollment was used for assay of the concentration of prothrombin fragment 1.2 (PT1.2, released when prothrombin is activated) and fibrinopeptide A (FPA, released when fibrinogen is cleaved). Platelet activation was identified with the use of flow cytometry in response to 0, 0.2, and 1 mu mol/l adenosine diphosphate (ADP). RESULTS- Concentrations of FPA, PT1.2, and platelet activation in the absence of agonist were low. Greater BMI was associated with higher platelet reactivity in response to 1 mu m ADP as assessed by surface expression of P-selectin (r = 0.29, P < 0.0001) but not reflected by the binding of fibrinogen to activated glycoprotein IIb-IIIa. BMI was not associated with concentrations of FPA or PT1.2. Platelet reactivity correlated negatively with A1C (P < 0.04), was not related to the concentration Of triglycerides in blood, and did not correlate with the concentration of C-reactive peptide. CONCLUSIONS- Among patients enrolled in this substudy of BARI 2D, a greater BMI was associated with higher platelet reactivity at the time of enrollment. Our results suggest that obesity and insulin resistance that accompanies obesity may influence platelet reactivity in patients with type 2 diabetes.
Resumo:
Complex glycoprotein biopharmaceuticals, such as follicle stimulating hormone (FSH), erythropoietin and tissue plasminogen activator consist of a range of charge isoforms due to the extent of sialic acid capping of the glycoprotein glycans. Sialic acid occupies the terminal position on the oligosaccharide chain, masking the penultimate sugar residue, galactose from recognition and uptake by the hepatocyte asialoglycoprotein receptor. It is therefore well established that the more acidic charge isoforms of glycoprotein biopharmaceuticals have higher in vivo potencies than those of less acidic isoforms due to their longer serum half-life. Current strategies for manipulating glycoprotein charge isoform profile involve cell engineering or altering bioprocesss parameters to optimise expression of more acidic or basic isoforms, rather than downstream separation of isoforms. A method for the purification of a discrete range of bioactive recombinant human FSH (rhFSH) charge isoforms based on Gradiflow(TM) preparative electrophoresis technology is described. Gradiflow(TM) electrophoresis is scaleable, and incorporation into glycoprotein biopharmaceutical production bioprocesses as a potential final step facilitates the production of biopharmaceutical preparations of improved in vivo potency. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Human follicle stimulating hormone is a pituitary glycoprotein that is essential for the maintenance of ovarian follicle development and testicular spermatogenesis. Like other members of the glycoprotein hormone family, it contains a common a subunit and a hormone specific beta subunit. Each subunit contains two glycosylation sites. The specific structures of the oligosaccharides of human follicle stimulating hormone have been shown to influence both the in vitro and in vivo bioactivity. Since the carbohydrate structure of a protein reflects the glycosylation apparatus of the host cells in which the protein is expressed, we examined the isoform profiles, in vitro bioactivity and metabolic clearance of a preparation of purified recombinant human follicle stimulating hormone derived from a stable, transfected Sp2/0 myeloma cell line, and pituitary human follicle stimulating hormone. Isoelectric focussing and chromatofocussing studies of human follicle stimulating hormone preparations both showed a more basic isoform profile for the recombinant human follicle stimulating hormone compared to that of pituitary human follicle stimulating hormone. The recombinant human follicle stimulating hormone had a significantly higher radioreceptor activity compared to that of pituitary human follicle stimulating hormone, consistent with a greater in vitro potency. Pharmacokinetic studies in rats indicated a similar terminal half life (124 min) to that of the pituitary human follicle stimulating hormone (119 min). Preliminary carbohydrate analysis showed recombinant human follicle stimulating hormone to contain high mannose and/or hybrid type, in addition to complex type carbohydrate chains, terminating with both alpha 2,3 and alpha 2,6 linked sialic acids. These results demonstrate that recombinant human follicle stimulating hormone made in the Sp2/0 myeloma cells is sialylated, has a more basic isoform profile, and has a greater in vitro biological potency compared to those of the pituitary human follicle stimulating hormone.
Resumo:
The field of protein crystallography inspires and enthrals, whether it be for the beauty and symmetry of a perfectly formed protein crystal, the unlocked secrets of a novel protein fold, or the precise atomic-level detail yielded from a protein-ligand complex. Since 1958, when the first protein structure was solved, there have been tremendous advances in all aspects of protein crystallography, from protein preparation and crystallisation through to diffraction data measurement and structure refinement. These advances have significantly reduced the time required to solve protein crystal structures, while at the same time substantially improving the quality and resolution of the resulting structures. Moreover, the technological developments have induced researchers to tackle ever more complex systems, including ribosomes and intact membrane-bound proteins, with a reasonable expectation of success. In this review, the steps involved in determining a protein crystal structure are described and the impact of recent methodological advances identified. Protein crystal structures have proved to be extraordinarily useful in medicinal chemistry research, particularly with respect to inhibitor design. The precise interaction between a drug and its receptor can be visualised at the molecular level using protein crystal structures, and this information then used to improve the complementarity and thus increase the potency and selectivity of an inhibitor. The use of protein crystal structures in receptor-based drug design is highlighted by (i) HIV protease, (ii) influenza virus neuraminidase and (iii) prostaglandin H-2-synthetase. These represent, respectively, examples of protein crystal structures that (i) influenced the design of drugs currently approved for use in the treatment of HIV infection, (ii) led to the design of compounds currently in clinical trials for the treatment of influenza infection and (iii) could enable the design of highly specific non-steroidal anti-inflammatory drugs that lack the common side-effects of this drug class.
Resumo:
A conformationally biased decapeptide agonist of human C5a anaphylatoxin (YSFKPMPLaR) was used as a molecular adjuvant in stimulating Ab responses against peptide epitopes derived from human MUC1 glycoprotein and the human mu and kappa opioid receptors. C57BL6 mice were immunized with the MUC1 epitope (YKQGGFLGL); the C5a agonist (YSFKPMPLaR); YSFKPMPLaR and YKQGGFLGL together, but unconjugated; a C5a-active, MUC1 epitope construct (YKQGGFLGLYSFKPMPLaR); and a C5a-inactive, reversed moiety construct (YSFKPMPLaRYKQGGFLGL). High Ab titers specific for the MUC1 epitope were observed Only in mice immunized with the C5a-active epitope construct. Similar results were obtained in BALB/c mice immunized with the C5a-active, MUC1 epitope construct, Abs from the sera of the C57BL6 mice were predominately of the IgG2a, IgC2b, and IgM isotypes and were reactive against human recombinant MUC1 and MUC1 expressed by the Panc-1 M1F.15 pancreatic cell line, When compared with the corresponding KLH-epitope conjugates in C57BL6 mice, the epitope-C5a agonist constructs produced titers of specific IgG Abs of isotypes distinct from those generated by the keyhole limpet hemocyanin-epitope conjugates, Rabbits immunized with a mu opioid receptor epitope-C5a agonist construct (GDLSDPCGNRTNLGGRDSLYSFKPMPLaR) or a kappa opioid receptor epitope-C5a agonist construct (FPGWAEPDSNGSEDAQLYSFKPMPLaR) generated high titer, epitope-specific Ab responses, Ab titers generated in response to the opioid epitope-C5a agonist constructs were comparable to those generated by the opioid KLH-epitope conjugates, The results of this study are discussed in terms of possible mechanisms by which the conformationally biased C5a agonist serves as a molecular adjuvant.
Resumo:
Context: Thyroglobulin (TG) is a large glycoprotein and functions as a matrix for thyroid hormone synthesis. TG gene mutations give rise to goitrous congenital hypothyroidism (CH) with considerable phenotype variation. Objectives: The aim of the study was to report the genetic screening of 15 patients with CH due to TG gene mutations and to perform functional analysis of the p. A2215D mutation. Design: Clinical evaluation and DNA sequencing of the TG gene were performed in all patients. TG expression was analyzed in the goitrous tissue of one patient. Human cells were transfected with expression vectors containing mutated and wild-type human TG cDNA. Results: All patients had an absent rise of serum TG after stimulation with recombinant human TSH. Sequence analysis revealed three previously described mutations (p. A2215D, p. R277X, and g. IVS30 + 1G > T), and two novel mutations (p. Q2142X and g. IVS46-1G > A). Two known (g. IVS30 + 1G/p. A2215D and p. A2215D/p. R277X) and one novel (p. R277X/g. IVS46-1G > A) compound heterozygous constellations were also identified. Functional analysis indicated deficiency in TG synthesis, reduction of TG secretion, and retention of the mutant TG within the cell, leading to an endoplasmic reticulum storage disease, whereas small amounts of mutant TG were still secreted within the cell system. Conclusion: All studied patients were either homozygous or heterozygous for TG gene mutations. Two novel mutations have been detected, and we show that TG mutation p. A2215D promotes the retention of TG within the endoplasmic reticulum and reduces TG synthesis and secretion, causing mild hypothyroidism. In the presence of sufficient iodine supply, some patients with TG mutations are able to compensate the impaired hormonogenesis and generate thyroid hormone. (J Clin Endocrinol Metab 94: 2938-2944, 2009)
Resumo:
Background: Many questions remain unanswered about premature atherosclerosis in rheumatoid arthritis (RA). Besides inflammation, some studies have suggested the role of autoantibodies on its pathogenesis. Objective: The aim of this study was to investigate the presence of antibodies against phospholipids, beta2-glycoproteinl (beta2-gpl), lipoprotein lipase, and heat shock proteins (Hsp) in RA patients and to evaluate their possible association with subclinical carotid atherosclerosis. Methods: Seventy-one RA patients and 53 age- and sex-matched controls were selected to perform anticardiolipin antibodies (aCL) (IgG and IgM), anti-beta2-gpl (IgG, IgM, and IgA), anti-lipoprotein lipase (anti-LPL), anti-Hsp 60, and anti-Hsp 65 by ELISA tests. Intima-medial thickness (IMT) of common carotid and presence of plaques were assessed by high-resolution B-mode ultrasonography. Exclusion criteria were smoking, diabetes, and arterial hypertension. Lipoproteins, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and fibrinogen levels, as well as health assessment questionnaire (HAQ) and disease activity score (DAS) 28 were also evaluated. Results: Age (48.93 +/- 12.31 vs. 45.37 +/- 9.37 years; p = 0.20) and body mass index (BMI) (p = 0.69) were similar in RA and controls, as well as female gender (p = 0.56). The mean IMT was similar between RA and controls (0. 721 +/- 0.16 vs. 0.667 +/- 0.14 turn, p = 0.07) but the frequency of plaques was higher in RA (14.1% vs. 1.9%; p = 0.02). In RA patients, IMT measurements did not differ according to the presence or absence of these antibodies: IgG aCL (0.62 +/- 0.64 vs. 0.72 +/- 0.17 mm, p = 0.24), IgM aCL (0.65 +/- 0.79 vs. 0.73 +/- 0.17 mm, p = 0.33), anti-Hsp 60 (0.78 +/- 0.20 vs. 0.71 +/- 0.16 mm, p = 0.27), anti-Hsp 65 (0.73 +/- 0.16 vs. 0.72 +/- 0.17 mm, p = 0.77), IgG anti-beta2-gpl (0.73 +/- 0.16 vs. 0.71 +/- 0.17 mm, p = 0.72), and anti-CCP (0.71 +/- 0.16 vs. 0.76 +/- 0.20 mm, p = 0.36). In addition, IMT did not correlate with antibodies titers: IgG aCL (r = -0.09, p = 0.47), IgM aCL (r = - 0.15, p = 0.21), anti-Hsp 60 (r = 0.10, p = 0.42), anti-Hsp 65 (r = 0.05, p = 0.69), IgG anti-beta2-gpl (r = - 0.07, p = 0.57), IgM anti-beta2-gpl (r = - 0.05, p = 0.69), IgA anti-beta2-gpl (r = 0.03, p = 0.79), and anti-CCP (r = - 0.07, p = 0.57). RA patients with plaques had a significantly higher age compared to those without plaques (p = 0.001), as well as higher mean IMT (p < 0.001), total cholesterol (p = 0.001), and LDL (p = 0.003). Conclusions: In RA a clear association between all autoantibodies studied herein and increased IMT or presence of plaques was not observed. The great prevalence of carotid atherosclerosis in RA was related to age, total and LDL cholesterol, as identified in normal population. (c) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
Atherosclerosis is an inflammatory disease, leading to the formation of pro-inflammatory and pro-oxidative lipids that generate an immune response. Several antigens have been shown to activate the immune response and affect the development of atherogenesis. Systemic lupus erythematosus is an autoimmune and inflammatory disease strongly associated with premature development of atherosclerotic plaques. Modulation of the immune system could represent a useful approach to prevent and/or treat atherosclerosis. A vaccination-based approach might be a useful, effective tool in the modern arsenal of cardiovascular therapies and could be used on a large scale at a low cost. In non-systemic lupus erythematosus populations, vaccines against oxidized low-density lipoprotein, beta-2-glycoprotein I, heat shock proteins, lipoproteins, cholesterol, molecules involved in cholesterol metabolism, and other molecules (CD99, vascular endothelial growth factor-receptor, and interleukin-2) have been tested, with promising results. However, there are no studies of vaccination against atherosclerosis in systemic lupus erythematosus. Lupus (2009) 18, 1209-1212.
Resumo:
Superparamagnetic iron oxide nanoparticles (SPIONs) are applied in stem cell labeling because of their high magnetic susceptibility as compared with ordinary paramagnetic species, their low toxicity, and their ease of magnetic manipulation. The present work is the study of CD133(+) stem cell labeling by SPIONs coupled to a specific antibody (AC133), resulting in the antigenic labeling of the CD133+ stem cell, and a method was developed for the quantification of the SPION content per cell, necessary for molecular imaging optimization. Flow cytometry analysis established the efficiency of the selection process and helped determine that the CD133 cells selected by chromatographic affinity express the transmembrane glycoprotein CD133. The presence of antibodies coupled to the SPION, expressed in the cell membrane, was observed by transmission electron microscopy. Quantification of the SPION concentration in the marked cells using the ferromagnetic resonance technique resulted in a value of 1.70 x 10 (13) mol iron (9.5 pg) or 7.0 x 10 (6) nanoparticles per cell ( the measurement was carried out in a volume of 2 mu L containing about 6.16 x 10 5 pg iron, equivalent to 4.5 x 10 (11) SPIONs). (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
CD133 antigen is an integral membrane glycoprotein that can bind with different cells. Originally, however. this cellular surface antigen was expressed in human stem cells and in various cellular progenitors of the haematopoietic system. Human cord blood has been described as an excellent source of CD133(+) haematopoietic progenitor cells with a large application potential. One of the main objectives of the present study is to describe for the first time the ultrastructural characteristics of CD133(+) stem cells using transmission electronic microscopy. Another objective of the manuscript is to demonstrate through transmission electronic microscopy the molecular image of magnetic nanoparticles connected to the stein cells of great biotechnological importance, as well as demonstrating the value of this finding for electronic paramagnetic resonance and its related nanobioscientific value. Ultrastructural results showed the monoclonal antibody anti-CD133 bound to the superparamagnetic nanoparticles by the presence of electrondense granules in cell membrane, as well as in the cytoplasm, revealing the ultrastructural characteristics of CD133(+) cells, exhibiting a round morphology with discrete cytoplasmic projections, having an active nucleus that follows this morphology. The cellular cytoplasm was filled up with mitochondrias, as well as microtubules and vesicles pinocitic. characterizing the process as being related to internalization of the magnetic nanoparticles that were endocyted by the cells in question. Electronic paramagnetic resonance analysis of the CD133(+) stem cells detected that the small (spectrum) generated by the labelled cells comes from the superparamagnetic nanoparticles that are bound to them. These results strongly suggest that these CD133(+) cells can be used in nanobiotechnology applications, with benefits in different biomedical areas.
Resumo:
Pemphigus refers to a group of human autoimmune blistering diseases involving skin and/or mucous membranes. Endemic pemphigus foliaceus (EPF), or fogo selvagem is an organ-specific autoimmune blistering disease, first reported in the beginning of the 20th century in rural areas of Brazil. The disease follows the course of streams and creeks, and vanishes after urbanization of the endemic areas. The auto-antigen related to EPF is desmoglein 1, a 160 kDa glycoprotein of the desmossomal core, targeted by in situ and circulating IgG autoantibodies, mainly of the IgG4 subclass.