873 resultados para Nickel-titanium
Resumo:
A nanostructured surface layer was formed on an Inconel 600 plate by subjecting it to surface mechanical attrition treatment at room temperature. Transmission electron microscopy and high-resolution transmission electron microscopy of the treated surface layer were carried out to reveal the underlying grain refinement mechanism. Experimental observations showed that the strain-induced nanocrystallization in the current sample occurred via formation of mechanical microtwins and subsequent interaction of the microtwins with dislocations in the surface layer. The development of high-density dislocation arrays inside the twin-matrix lamellae provides precursors for grain boundaries that subdivide the nanometer-thick lamellae into equiaxed, nanometer-sized grains with random orientations.
Resumo:
Defects induced by plastic deformation in electrodeposited, fully dense nanocrystalline (nc) Ni with an average grain size of 25 nm have been characterized by means of high resolution transmission electron microscopy. The nc Ni was deformed under uniaxial tension at liquid-nitrogen temperature. Trapped full dislocations were observed in the grain interior and near the grain boundaries. In particular, these dislocations preferred to exist in the form of dipoles. Deformation twinning was confirmed in nc grains and the most proficient mechanism is the heterogeneous nucleation via emission of partial dislocations from the grain boundaries.
Resumo:
Cylindrical specimens (4 mm diameter and 4 mm height) of titanium alloy bar were given various heat treatments to provide a wide range of microstructures and mechanical parameters. These specimens were then subjected to high plastic strain at a large strain rate (103 s-1 ) during dynamic compression by a split Hopkinson bar at ambient temperature. The microstructures of the localised shear bands were examined by optical and transmission electron microscopy. The results show that there are two types of localised shear bands: deformed and white shear bands. A detailed observation reveals that there is no difference in the nature of the deformed and white shear bands, but they occur at different stages of localised deformation. It is found that there is a burst of strain, corresponding to a critical strain rate at which the white shear band occurs and no phase transformation occurs in the shear bands.
Resumo:
In this paper the microstructure characteristic of the cold-rolled deformed nanocrystalline Nickel metal has been studied by transmission electron microscopy (TEM). The results show that there were step structures near by grain boundary (GB), and the contrast of stress field in front of the step corresponds to the step in the shape. It indicates that the interaction between twins and dislocations is not a necessary condition to realizing the deformation. In the later stage of the deformation when the grain size became about 100 nm, the deformation occurs only depend upon the moving of the boundary of the stack faults (SFs) which result from the imperfection dislocations emitted from GBs. In the other word, the movement of the boundary dislocations of SFs results to growing-up of the size of the SFs, therefore realizes deformation. However, when the size of stack faults grows up, the local internal stress which is in front of the step gradually becomes higher. When this stress reach a critical value stopping the gliding of the partial dislocations, the SFs will stop growing up and leave a step structure behind.
Resumo:
The hybrid quantum mechanics (QM) and molecular mechanics (MM) method is employed to simulate the His-tagged peptide adsorption to ionized region of nickel surface. Based on the previous experiments, the peptide interaction with one Ni ion is considered. In the QM/MM calculation, the imidazoles on the side chain of the peptide and the metal ion with several neighboring water molecules are treated as QM part calculated by “GAMESS”, and the rest atoms are treated as MM part calculated by “TINKER”. The integrated molecular orbital/molecular mechanics (IMOMM) method is used to deal with theQMpart with the transitional metal. By using the QM/MM method, we optimize the structure of the synthetic peptide chelating with a Ni ion. Different chelate structures are considered. The geometry parameters of the QM subsystem we obtained by QM/MM calculation are consistent with the available experimental results. We also perform a classical molecular dynamics (MD) simulation with the experimental parameters for the synthetic peptide adsorption on a neutral Ni(1 0 0) surface. We find that half of the His-tags are almost parallel with the substrate, which enhance the binding strength. Peeling of the peptide from the Ni substrate is simulated in the aqueous solvent and in vacuum, respectively. The critical peeling forces in the two environments are obtained. The results show that the imidazole rings are attached to the substrate more tightly than other bases in this peptide.
Resumo:
The microstructure characteristic of the cold-rolled deformed nanocrystalline nickel metal is studied by transmission electron microscopy. The results show that there are step structures nearby the grain boundary (GB), and the contrast of stress field in front of the step corresponds to the step in the shape. It is indicated that the interaction between twins and dislocations is not a necessary condition to realizing the deformation. In the later stage of the deformation when the grain size becomes about 100nm, the deformation can depend upon the moving of the boundary of the stack faults (SFs) which result from the partial dislocations emitted from GBs. However, when the size of SFs grows up, the local internal stress which is in front of the step gradually becomes higher. When this stress reaches a critical value which stops the gliding of the partial dislocations, the SFs will stop to grow up and leave a step structure behind.
Resumo:
We reported that work softening takes place during room-temperature rolling of nanocrystalline Ni at an equivalent strain of around 0.30. The work softening corresponds to a strain-induced phase transformation from a face-centered cubic (fcc) to a body-centered cubic (bcc) lattice. The hardness decreases with increasing volume fraction of the bcc phase. When the deformed samples are annealed at 423 K, a hardening of the samples takes place. This hardening by annealing can be attributed to a variety of factors including the recovery transformation from the bcc to the fcc phase, grain boundary relaxation, and retardation of dislocation gliding by microtwins.
Resumo:
Internal friction of nanocrystalline nickel is investigated by mechanical spectroscopy from 360 K to 120 K. Two relaxation peaks are found when nanocrystalline nickel is bent up to 10% strain at room temperature and fast cooling. However, these two peaks disappear when the sample is annealed at room temperature in vacuum for ten days. The occurrence and disappearance of the two relaxation peaks can be explained by the interactions of partial dislocations and point defects in nanocrystalline materials.
Resumo:
Experiments of laser welding cast nickel-based superalloy K418 were conducted. Microstructure of the welded seam was characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectrometer (EDS). Mechanical properties of the welded seam were evaluated by microhardness. The corresponding mechanisms were discussed in detail. Results show that the laser welded seam have non-equilibrium solidified microstructures consisting of Cr-Ni-Fe-C austenite solid solution dendrites as the dominant and some fine and dispersed Ni-3(Al,Ti) gamma' phase as well as little amount of MC needle carbides and particles enriched in Nb, Ti and Mo distributed in the interdendritic regions, cracks originated from the liquation of the low melting points eutectics in the HAZ grain boundary are observed, the average microhardness of the welded seam and HAZ is higher than that of the base metal due to alloy elements' redistribution of the strengthening phase gamma'. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Thickness and component distributions of large-area thin films are an issue of international concern in the field of material processing. The present work employs experiments and direct simulation Monte Carlo (DSMC) method to investigate three-dimensional low-density, non-equilibrium jets of yttrium and titanium vapor atoms in an electron-beams physical vapor deposition (EBPVD) system furnished with two or three electron-beams, and obtains their deposition thickness and component distributions onto 4-inch and 6-inch mono-crystal silicon wafers. The DSMC results are found in excellent agreement with our measurements, such as evaporation rates of yttrium and titanium measured in-situ by quartz crystal resonators, deposited film thickness distribution measured by Rutherford backscattering spectrometer (RBS) and surface profilometer and deposited film molar ratio distribution measured by RBS and inductively coupled plasma atomic emission spectrometer (ICP-AES). This can be taken as an indication that a combination of DSMC method with elaborate measurements may be satisfactory for predicting and designing accurately the transport process of EBPVD at the atomic level.
Resumo:
Based on detailed x-ray diffraction and transmission electron microscopy we have found body-centered-cubic (bcc) Ni upon room-temperature rolling of nanocrystalline (nc) face-centered-cubic (fcc) Ni. The bcc phase forms via the Kurdjumov-Sachs (KS) martensitic transformation mechanism when the von Mises equivalent strain exceeds similar to 0.3, much higher than accessible in tensile testing. The fcc and bcc phases keep either the KS or the Nishiyama-Wasserman orientation relationship. Our results provide insights into the deformation physics in nc Ni, namely, the fcc-to-bcc phase transformation can also accommodate plasticity at large plastic strains. (C) 2008 American Institute of Physics.