911 resultados para Neuro-fuzzy systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A man-machine system called teleoperator system has been developed to work in hazardous environments such as nuclear reactor plants. Force reflection is a type of force feedback in which forces experienced by the remote manipulator are fed back to the manual controller. In a force-reflecting teleoperation system, the operator uses the manual controller to direct the remote manipulator and receives visual information from a video image and/or graphical animation on the computer screen. This thesis presents the design of a portable Force-Reflecting Manual Controller (FRMC) for the teleoperation of tasks such as hazardous material handling, waste cleanup, and space-related operations. The work consists of the design and construction of a prototype 1-Degree-of-Freedom (DOF) FRMC, the development of the Graphical User Interface (GUI), and system integration. Two control strategies - PID and fuzzy logic controllers are developed and experimentally tested. The system response of each is analyzed and evaluated. In addition, the concept of a telesensation system is introduced, and a variety of design alternatives of a 3-DOF FRMC are proposed for future development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computational Intelligence Methods have been expanding to industrial applications motivated by their ability to solve problems in engineering. Therefore, the embedded systems follow the same idea of using computational intelligence tools embedded on machines. There are several works in the area of embedded systems and intelligent systems. However, there are a few papers that have joined both areas. The aim of this study was to implement an adaptive fuzzy neural hardware with online training embedded on Field Programmable Gate Array – FPGA. The system adaptation can occur during the execution of a given application, aiming online performance improvement. The proposed system architecture is modular, allowing different configurations of fuzzy neural network topologies with online training. The proposed system was applied to: mathematical function interpolation, pattern classification and selfcompensation of industrial sensors. The proposed system achieves satisfactory performance in both tasks. The experiments results shows the advantages and disadvantages of online training in hardware when performed in parallel and sequentially ways. The sequentially training method provides economy in FPGA area, however, increases the complexity of architecture actions. The parallel training method achieves high performance and reduced processing time, the pipeline technique is used to increase the proposed architecture performance. The study development was based on available tools for FPGA circuits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Automatic detection of blood components is an important topic in the field of hematology. The segmentation is an important stage because it allows components to be grouped into common areas and processed separately and leukocyte differential classification enables them to be analyzed separately. With the auto-segmentation and differential classification, this work is contributing to the analysis process of blood components by providing tools that reduce the manual labor and increasing its accuracy and efficiency. Using techniques of digital image processing associated with a generic and automatic fuzzy approach, this work proposes two Fuzzy Inference Systems, defined as I and II, for autosegmentation of blood components and leukocyte differential classification, respectively, in microscopic images smears. Using the Fuzzy Inference System I, the proposed technique performs the segmentation of the image in four regions: the leukocyte’s nucleus and cytoplasm, erythrocyte and plasma area and using the Fuzzy Inference System II and the segmented leukocyte (nucleus and cytoplasm) classify them differentially in five types: basophils, eosinophils, lymphocytes, monocytes and neutrophils. Were used for testing 530 images containing microscopic samples of blood smears with different methods. The images were processed and its accuracy indices and Gold Standards were calculated and compared with the manual results and other results found at literature for the same problems. Regarding segmentation, a technique developed showed percentages of accuracy of 97.31% for leukocytes, 95.39% to erythrocytes and 95.06% for blood plasma. As for the differential classification, the percentage varied between 92.98% and 98.39% for the different leukocyte types. In addition to promoting auto-segmentation and differential classification, the proposed technique also contributes to the definition of new descriptors and the construction of an image database using various processes hematological staining

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The great interest in nonlinear system identification is mainly due to the fact that a large amount of real systems are complex and need to have their nonlinearities considered so that their models can be successfully used in applications of control, prediction, inference, among others. This work evaluates the application of Fuzzy Wavelet Neural Networks (FWNN) to identify nonlinear dynamical systems subjected to noise and outliers. Generally, these elements cause negative effects on the identification procedure, resulting in erroneous interpretations regarding the dynamical behavior of the system. The FWNN combines in a single structure the ability to deal with uncertainties of fuzzy logic, the multiresolution characteristics of wavelet theory and learning and generalization abilities of the artificial neural networks. Usually, the learning procedure of these neural networks is realized by a gradient based method, which uses the mean squared error as its cost function. This work proposes the replacement of this traditional function by an Information Theoretic Learning similarity measure, called correntropy. With the use of this similarity measure, higher order statistics can be considered during the FWNN training process. For this reason, this measure is more suitable for non-Gaussian error distributions and makes the training less sensitive to the presence of outliers. In order to evaluate this replacement, FWNN models are obtained in two identification case studies: a real nonlinear system, consisting of a multisection tank, and a simulated system based on a model of the human knee joint. The results demonstrate that the application of correntropy as the error backpropagation algorithm cost function makes the identification procedure using FWNN models more robust to outliers. However, this is only achieved if the gaussian kernel width of correntropy is properly adjusted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main aim of this investigation is to propose the notion of uniform and strong primeness in fuzzy environment. First, it is proposed and investigated the concept of fuzzy strongly prime and fuzzy uniformly strongly prime ideal. As an additional tool, the concept of t/m systems for fuzzy environment gives an alternative way to deal with primeness in fuzzy. Second, a fuzzy version of correspondence theorem and the radical of a fuzzy ideal are proposed. Finally, it is proposed a new concept of prime ideal for Quantales which enable us to deal with primeness in a noncommutative setting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main aim of this investigation is to propose the notion of uniform and strong primeness in fuzzy environment. First, it is proposed and investigated the concept of fuzzy strongly prime and fuzzy uniformly strongly prime ideal. As an additional tool, the concept of t/m systems for fuzzy environment gives an alternative way to deal with primeness in fuzzy. Second, a fuzzy version of correspondence theorem and the radical of a fuzzy ideal are proposed. Finally, it is proposed a new concept of prime ideal for Quantales which enable us to deal with primeness in a noncommutative setting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Postprint

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motivated by environmental protection concerns, monitoring the flue gas of thermal power plant is now often mandatory due to the need to ensure that emission levels stay within safe limits. Optical based gas sensing systems are increasingly employed for this purpose, with regression techniques used to relate gas optical absorption spectra to the concentrations of specific gas components of interest (NOx, SO2 etc.). Accurately predicting gas concentrations from absorption spectra remains a challenging problem due to the presence of nonlinearities in the relationships and the high-dimensional and correlated nature of the spectral data. This article proposes a generalized fuzzy linguistic model (GFLM) to address this challenge. The GFLM is made up of a series of “If-Then” fuzzy rules. The absorption spectra are input variables in the rule antecedent. The rule consequent is a general nonlinear polynomial function of the absorption spectra. Model parameters are estimated using least squares and gradient descent optimization algorithms. The performance of GFLM is compared with other traditional prediction models, such as partial least squares, support vector machines, multilayer perceptron neural networks and radial basis function networks, for two real flue gas spectral datasets: one from a coal-fired power plant and one from a gas-fired power plant. The experimental results show that the generalized fuzzy linguistic model has good predictive ability, and is competitive with alternative approaches, while having the added advantage of providing an interpretable model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motivated by environmental protection concerns, monitoring the flue gas of thermal power plant is now often mandatory due to the need to ensure that emission levels stay within safe limits. Optical based gas sensing systems are increasingly employed for this purpose, with regression techniques used to relate gas optical absorption spectra to the concentrations of specific gas components of interest (NOx, SO2 etc.). Accurately predicting gas concentrations from absorption spectra remains a challenging problem due to the presence of nonlinearities in the relationships and the high-dimensional and correlated nature of the spectral data. This article proposes a generalized fuzzy linguistic model (GFLM) to address this challenge. The GFLM is made up of a series of “If-Then” fuzzy rules. The absorption spectra are input variables in the rule antecedent. The rule consequent is a general nonlinear polynomial function of the absorption spectra. Model parameters are estimated using least squares and gradient descent optimization algorithms. The performance of GFLM is compared with other traditional prediction models, such as partial least squares, support vector machines, multilayer perceptron neural networks and radial basis function networks, for two real flue gas spectral datasets: one from a coal-fired power plant and one from a gas-fired power plant. The experimental results show that the generalized fuzzy linguistic model has good predictive ability, and is competitive with alternative approaches, while having the added advantage of providing an interpretable model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eine effiziente Gestaltung von Materialbereitstellungsprozessen ist eine entscheidende Voraussetzung für die Sicherstellung einer hohen Verfügbarkeit von Materialien in der Montage. Die Auswahl adäquater Bereitstellungsstrategien muss sich stets an den Anforderungen des Materialbereitstellungsprozesses orientieren. Die Leistungsanforderungen an eine effektive Materialbereitstellung werden maßgeblich durch den Montageprozess determiniert. Diesen Leistungsanforderungen ist eine passgenaue Materialbereitstellungsstrategie gegenüberzustellen. Die Formulierung der Leistungsanforderungen kann dabei in qualitativer oder quantitativer Form erfolgen. Allein die Berücksichtigung quantitativer Daten ist unzureichend, denn häufig liegen zum Zeitpunkt der Planung weder belastbare quantitative Daten vor, noch erscheint der Aufwand zu deren Ermittlung angemessen. Zudem weisen die herkömmlichen Methoden, die im Rahmen der Auswahl von Materialbereitstellungsstrategien häufig eingesetzt werden, den Nachteil auf, dass eine Nichterfüllung einer bestimmten Leistungsanforderung durch eine besonders gute Erfüllung einer anderen Leistungsanforderung kompensiert werden kann (Zeit vs. Qualität). Um die Auswahl einer Materialbereitstellungsstrategie unter Berücksichtigung qualitativer und quantitativer Anforderungen durchführen zu können, eignet sich in besonderer Weise die Methode des Fuzzy Axiomatic Designs. Diese Methode erlaubt einen Abgleich von Anforderungen an den Materialbereitstellungsprozess und der Eignung unterschiedlicher Materialbereitstellungsstrategien.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This keynote presentation will report some of our research work and experience on the development and applications of relevant methods, models, systems and simulation techniques in support of different types and various levels of decision making for business, management and engineering. In particular, the following topics will be covered. Modelling, multi-agent-based simulation and analysis of the allocation management of carbon dioxide emission permits in China (Nanfeng Liu & Shuliang Li Agent-based simulation of the dynamic evolution of enterprise carbon assets (Yin Zeng & Shuliang Li) A framework & system for extracting and representing project knowledge contexts using topic models and dynamic knowledge maps: a big data perspective (Jin Xu, Zheng Li, Shuliang Li & Yanyan Zhang) Open innovation: intelligent model, social media & complex adaptive system simulation (Shuliang Li & Jim Zheng Li) A framework, model and software prototype for modelling and simulation for deshopping behaviour and how companies respond (Shawkat Rahman & Shuliang Li) Integrating multiple agents, simulation, knowledge bases and fuzzy logic for international marketing decision making (Shuliang Li & Jim Zheng Li) A Web-based hybrid intelligent system for combined conventional, digital, mobile, social media and mobile marketing strategy formulation (Shuliang Li & Jim Zheng Li) A hybrid intelligent model for Web & social media dynamics, and evolutionary and adaptive branding (Shuliang Li) A hybrid paradigm for modelling, simulation and analysis of brand virality in social media (Shuliang Li & Jim Zheng Li) Network configuration management: attack paradigms and architectures for computer network survivability (Tero Karvinen & Shuliang Li)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a novel demand response model using a fuzzy subtractive cluster approach. The model development provides support to domestic consumer decisions on controllable loads management, considering consumers' consumption needs and the appropriate load shape or rescheduling in order to achieve possible economic benefits. The model based on fuzzy subtractive clustering method considers clusters of domestic consumption covering an adequate consumption range. Analysis of different scenarios is presented considering available electric power and electric energy prices. Simulation results are presented and conclusions of the proposed demand response model are discussed. (C) 2016 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sustainability in software system is still a new practice that most software developers and companies are trying to incorporate into their software development lifecycle and has been largely discussed in academia. Sustainability is a complex concept viewed from economic, environment and social dimensions with several definitions proposed making sometimes the concept of sustainability very fuzzy and difficult to apply and assess in software systems. This has hindered the adoption of sustainability in the software industry. A little research explores sustainability as a quality property of software products and services to answer questions such as; How to quantify sustainability as a quality construct in the same way as other quality attributes such as security, usability and reliability? How can it be applied to software systems? What are the measures and measurement scale of sustainability? The Goal of this research is to investigate the definitions, perceptions and measurement of sustainability from the quality perspective. Grounded in the general theory of software measurement, the aim is to develop a method that decomposes sustainability in factors, criteria and metrics. The Result is a method to quantify and access sustainability of software systems while incorporating management and users concern. Conclusion: The method will empower the ability of companies to easily adopt sustainability while facilitating its integration to the software development process and tools. It will also help companies to measure sustainability of their software products from economic, environmental, social, individual and technological dimension.