957 resultados para Mn:YAP
Resumo:
The electrochemical corrosion behavior of Mg-6Al-0.4Mn and Mg-6Al-4RE-0.4Mn (RE = Mischmetal) alloys is investigated in 3.5% NaCl solution. The results of corrosion process, polarization behavior, and electrochemical impedance spectroscopy of the alloys reveal that Mg-6Al-4RE-0.4Mn exhibits enhanced corrosion resistance. The addition of RE stabilizes the solid solution and modifies the passive film through a finer microstructure.
Resumo:
Luminescent properties of LaMgAl11O19:Tb, Mn phosphors were investigated. It was observed that the energy distributions of the Tb3+-emission bands associated with transitions from the D-5(3) and D-5(4) levels to F-7(J) depend on the Tb3+-concentration, which is due to the cross-relaxation between Tb 31 ions. The emission band at about 516 nm is attributed to the T-4(1) -> (6)A(1) transition of the Mn2+ ions. We observed an energy transfer from the Tb 3, to Mn2+ ions in LaMgAl11O19:Tb, Mn.
Resumo:
Two 3d-4f heterometallic compounds of p-tert-butylsulfinylcalix[4] arene were synthesized by the solvothermal method and characterized by some hinged double-dumbbell-like subunits in which two perpendicular dumbbell entities were constructed by an in-between isosceles triangle Mn(II)Ln(2)(III), and two tail-to-tail calixarene molecules, and hinged by the lanthanide-sulfinyl group bonding. The magnetic properties of the title compounds were examined.
Resumo:
Four transition-metal-amine complexes incorporating indium thioarsenates with the general formula M(tren)InAsS4 (M=Mn, Co, and Zn) and a noncondensed AsS33- unit have been prepared and characterized. Single-crystal X-ray diffraction analyses show that compound 1 (M=Mn) crystallizes in the triclinic crystal system (space group: P (1) over bar) and consists of a one-dimensional (1D) inorganic (1)(infinity){[InAsS4](2-)} chain and [Mn(tren)](2+) groups bonded to the opposite sides of an eight-membered In2As2S4 ring along the backbone of the infinite inorganic chains. Compounds 2 (M=Mn), 3 (M=Zn), and 4 (M=Co) are isomorphous molecular compounds. They all crystallize in the monoclinic crystal system (space group: P2(1)/c). The Mn2+ cation of [Mn(tren)](2+) in 1 has a distorted octahedral environment, while the transition-metal cations of [M(tren)](2+) in the other three compounds locate in trigonal-bipyramidal environments.
Resumo:
用离子交换法制备了Mn2+交换的NaY分子筛MnNaY,用红外光谱(IR)和X射线粉末衍射(XRD)等方法进行了表征.研究了Mn2+含量为3.2%的样品在酸性水溶液中的稳定性和离子交换选择性.弛豫时间测量和体内磁共振成像实验表明其弛豫效率变化范围为4.9~9.7mmol·L·s-1,高于目前临床所用造影剂Gd-DTPA,对胃部MRI信号具有良好的增强效果.它是比较好的潜在口服胃肠道造影剂.
Resumo:
Two mono-substituted manganese polyoxometalates, K6MnSiW11O39 (MnSiW11) and K8MnP2W17O61 (MnP2W17), have been evaluated by in vivo and in vitro experiments as the candidates of potential tissue-specific contrast agents for magnetic resonance imaging (MRI). T-1-relaxivities of 12.1 mM(-1) s(-1) for MnSiW11 and 4.7 mM(-1) s(-1) for MnP2W17 (400 MHz, 25 degrees C) were higher than or similar to that of the commercial MRI contrast agent (GdDTPA). Their relaxivities in BSA and hTf solutions were also reported. After administration of MnSiW11 and MnP2W17 to Wistar rats, MR imaging showed longer and remarkable enhancement in rat liver and favorable renal excretion capability. The signal intensity increased by 74.0 +/- 4.9% for the liver during the whole imaging period (90 min) and by 67.2 +/- 5.3% for kidney within 20-70 min after injection at 40 +/- 3 mu mol kg(-1) dose for MnSiW11. MnP2W17 induced 71.5 +/- 15.1%. enhancement for the liver in 10-45 min range and 73.1 +/- 3.2% enhancement for kidney within 5-40 min after injection at 39 +/- 3 mu mol kg(-1) dose. In vitro and in vivo study showed MnSiW11 and MnP2W17 being favorable candidates as the tissue-specific contrast agents for MRI.
Resumo:
The dilute magnetic semiconductor of Sn1-x-yMnxFeyO2 (0 <= x <= 0.10, 0 <= y <= 0.10) Were syhthesized with the hydrothermal method using SnCl4, Mn(CH3COO)(2) center dot 4H(2)O and FeCl3 center dot 6H(2)O as the raw materials. The structure, morphologies and magnetic properties of the sample were characterized via X-ray powder diffractometer(XRD), transmission electron microscopy(TEM), Raman spectrum and superconducting and quantum interference device(SQUIT), and Mossbeaur spectrum. No secondary phase was found in the XRD spectrum. The morphology of the samples is affected by the kind or the mount of transition metal. The local vibrating model-of Mn Positioned SnO2 sites was found in Raman spectrum. The measured magnetic results indicate that when x = 0.10, y = 0, the sample exhibits strong magnetization in low-temperature (5 K), but the magnetization decrease rapidly at room. temperature; In contrast, when x = 0, y = 0.1, the sample's magnetization and coercivity are both small, but being temperature independent. Mossbeaur spectra indicates that part of the Fe is ferromagnetic coupled, and the simulating results indicate that the ferromagnetic character is intrinsic.
Resumo:
Many phases appear in BaLn(2)Mn(2)O(7) family (Ln = rare earth) belonging to one of the Ruddlesden-Popper type compounds, depending upon the experimental conditions such as heating conditions when prepared and composition. Some of these phases were characterized by powder X-ray diffraction method using Rietveld analysis. These phases have only a little difference in crystal structure which has fundamentally K2NiF4 type structure, although the X-ray diffraction patterns are clearly different: a little deformation or tilting of the oxygen octahedron surrounding a central manganese ion composing the main frame of this structure induce these different diffraction patterns. Phase behavior of these compounds, mainly the detailed relation between various phases in BaTb2Mn2O7, was refined including the data of high temperature X-ray diffractometry.
Resumo:
Reactions of freshly prepared M(OH)(2-2x)(CO3)(x) (.) yH(2)O (M = Mn, Zn) and 4,4'-bipyridine (bpy) with succinic acid (H2L) or famaric acid (H2L') in CH3OH-H2O afforded [Mn(H2O)(4)(bpy)]L (.) 4H(2)O, 1, [Mn(H2O)(4)(bpy)]L' (.) 4H(2)O, 2 and [Zn(H2O)(4)(bpy)]L (.) 4H(2)O, 3. The three coordination polymers are isostructural and consist of (1)(infinity)[M(H2O)(4)(bpy)(2/2)](2+) cationic chains, crystal H2O molecules and dicarboxylate anions (succinate or fumarate anions). Within the chains, the metal atoms are each octahedrally coordinated by four aqua oxygen atoms and two pyridyl nitrogen atoms from two 4,4'-bipyridine ligands. The crystal H2O molecules are hydrogen bonded to dicarboxylate anions to form ribbon-like anionic chains. The cationic and anionic chains are interconnected via hyqrogen bonds to generate a 3D network. Crystal data: 1 triclinic, P (1) over bar, a = 7.235(1), b = 7.749(2), c = 10.020(2) Angstrom, alpha = 79.95(3), beta = 88.79(3), gamma = 71.39(3)degrees, V = 523.9(2) Angstrom(3) and D-cal = 1.494 g cm(-3) for Z = 1; 2 triclinic, P (1) over bar, a = 7.127(1), b = 7.800(2), c = 9.945(2) Angstrom, alpha = 80.26(3), beta = 87.86(3), gamma = 72.69(3)degrees, V = 520.2(2) Angstrom(3) and D-cal = 1.498 g cm(-3) for Z = 1; 3 triclinic, P (1) over bar, a = 7.189(1), b = 7.764(2), c = 9.843(2) Angstrom, alpha = 79.16(3), beta = 87.80(3), gamma = 71.29(3)degrees, V = 510.9(2) Angstrom(3) and D-cal = 1.559 g cm(-3) for Z = 1.
Resumo:
The synthesis and luminescence properties of Zn2SiO4:Mn phosphor layers on spherical silica spheres,i.e.,a kind of core-shell complex phosphor,Zn2SiO4:Mn@SiO2 were described.Firstly,monodisperse silica spheres were obtained via the Stober method by the hydrolysis of tetraethoxysilane(TEOS)Si(OC2H5)4 under base condition (using NH4OH as the catalyst).Secondly,the silica spheres were coated with a Zn2SiO4:Mn phosphor layer by a Pechini sol-gel process.X-ray diffraction(XRD),scanning electron microscope(SEM),energy-dispersive X-ray spectrum(EDS) and photoluminescence(PL) were employed to characterize the resulting complex phosphor.The results comfirm that 1000℃ annealed sample consists of crystalline Zn2SiO4:Mn shells and amorphous SiO2 cores.The phosphor show the green emission of Mn2+ at 521nm corresponding 4T1(4G)-6A1(6S) transition,and the possible luminescence mechanism is proposed.
Resumo:
The influence of the Mn-O-Mn bond angle on the magnetic and electronic properties of YBaMn2O5 was studied by density functional theory, which was implemented in the CASTEP code. In practical calculation, both G- and A-type antiferromagnetic (AFM) orderings were considered. The calculated results indicated that G-type is more stable than A-type, in agreement with both experiment and previous theoretical study. It is also interesting to note that a transition from G-type to A-type at an Mn-O-Mn angle of ca. 170 degrees was found upon increasing Mn-O-Mn angle. Therefore, the calculation suggested that what is essential to stabilize the G-type AFM state is the reduction of the Mn-O-Mn bond angle. For both magnetic orderings, the compound changes from semiconductor to metal with the increase of Mn-O-Mn angle.