783 resultados para Metal Leaching
Resumo:
Tässä tutkimuksessa käsitellään heavy metal -kappaleiden sanoitusten sisältöä. Tutkimusmateriaaliin on valittu yksi teema, sota, jonka avulla avataan sanoitusten sisältöä ja merkitystä. Metallimusiikki alakulttuurina on tyylillisesti ja temaattisesti spesifi, ja sillä on omat musiikilliset tavoitteensa. Tässä tutkimuksessa tarkastellaan erityisesti sitä miten sotaa kritisoidaan tai perustellaan heavy rock -sanoituksissa. Tutkimusmateriaalini koostuu 29 englanninkielisen kappaleen sanoituksesta vuosilta 1970–2012. Edustettuina on useita ajanjaksoja sekä maita. Yhdistävänä tekijänä on englannin kielen lisäksi se, että kaikki sanoitukset käsittelevät modernia länsimaista sodankäyntiä. Tekstit valittiin sen perusteella, että niissä ilmeni positiivinen tai negatiivinen näkökulma sotaan. Tutkimus nojaa Theo van Leeuwenin legitimaatioteoriaan, joka puolestaan pohjautuu diskurssianalyysiin. Legitimaatioteoria käsittää neljä strategiaa, jotka voivat joko kritisoida tai perustella sosiaalisia käytänteitä. Ne ovat auktoriteetteihin vetoaminen, moraalinen arviointi, järkeistäminen ja mytopoeesi. Yksi tavoitteistani tutkimuksessani on selvittää legitimaatioteorian toimivuutta omassa materiaalissani. Käytän metodina lähilukua, joka mahdollistaa niiden sanojen ja ilmaisujen identifioimisen, jotka ovat näkökulmaltaan joko positiivisesti tai negatiivisesti sotaan suhtautuvia. Analyysini kannalta tärkeitä ovat sekä kieli- että kulttuurikonteksti, sillä ne määrittelevät sanojen merkityksen. Analyysin perusteella kävi ilmi, että esimerkit jakautuivat eri strategioiden välille hyvin epätasaisesti. Auktoriteetteihin vetoamisen strategiasta löytyi vain yksi esimerkki, kun taas moraalisen arvioinnin esimerkkejä oli neljätoista. Lisäksi kaikkia legitimaatioteorian alaryhmiä ei löytynyt materiaalista ollenkaan. Osalla alaryhmistä oli useita esiintymiä, mutta osalla vain yksi. Esimerkkien epätasaista jakautumista selittää mm. se, että tutkimuksen materiaalin kannalta kaikki alakategoriat eivät ole relevantteja. Jotta tutkimustuloksista saataisiin edustavampi, laajempi otanta olisi tarpeen. Legitimaatioteorian soveltuvuutta sanoituksien yhteydessä tulisi tutkia laajemmin.
Resumo:
Lectio praecursoria, Åbo Akademi 25.1 2013.
Resumo:
The present paper describes an integrated micro/macro mechanical study of the elastic-viscoplastic behavior of unidirectional metal matrix composites (MMC). The micromechanical analysis of the elastic moduli is based on the Composites Cylinder Assemblage model (CCA) with comparisons also draw with a Representative Unit Cell (RUC) technique. These "homogenization" techniques are later incorporated into the Vanishing Fiber Diameter (VFD) model and a new formulation is proposed. The concept of a smeared element procedure is employed in conjunction with two different versions of the Bodner and Partom elastic-viscoplastic constitutive model for the associated macroscopic analysis. The formulations developed are also compared against experimental and analytical results available in the literature.
Resumo:
The application of flux cored arc welding (FCAW) has increased in manufacturing and fabrication. Even though FCAW is well known for its good capability in producing quality welds, few reports have been published on the cause of the relatively high diffusible hydrogen content in the weld metal and its relation with the ingredients used in the wire production and with the welding parameters (mainly welding current). This paper describes experiments where data obtained from weld metal diffusible hydrogen analysis, metal droplet collection, and high-speed recording of metal droplet transfer were used to evaluate the effect of welding current on diffusible hydrogen content in the weld metal. The results from gas chromatography analysis showed that weld metal hydrogen content indeed increased with welding current. A polynomial regressional analysis concluded that hydrogen increase with current was better described by a linear function with proportional constant of approximately 0.7 or 70%. Different from the GMA welding transfer behavior, statistical analysis showed only a small increase in metal droplet size with increasing current. The metal transfer mode remained in the globular range for currents between 100 and 150 A. The most surprising findings were with the high-speed cinematography recording. Observing the high speed movies, it was possible to see that at low current, "unmelted" flux sporadically touched the weld pool but at higher current, the flux remained touching the weld pool during the whole time of droplet formation and transfer. It is believed that since the flux has ingredients that contain hydrogen, hydrogen passes through the arc undisturbed, going to the weld bead intact and increasing the hydrogen content in the weld metal. Another important observation is regarding to droplet size. Droplet size increased with increasing current because forces from decomposed gases from the flux could sustain the droplets, retarding their transfer and allowing them to grow.
Resumo:
Larsmo-Öjasjön i Österbotten skapades genom invallningar på 1960-talet pga. industrins behov av sötvatten. Sedan dess har vattenområdet drabbats av återkommande försurning och fiskdöd, och invallningen har ofta beskyllts för problemen. Avhandlingen undersöker syrabelastningen i området; bl.a. hur markanvändning, hydrologi och klimatförändringen påverkar belastningen. Konsekvenserna undersöks med fiskyngel som bioindikator, och olika miljömetoder testas och diskuteras. Ökad kunskap om försurningen hjälper oss att tillämpa effektiva miljömetoder och få förbättrad vattenkvalitet i framtiden. Den primära orsaken till den försämrade vattenkvaliteten under de senaste 40 åren är intensiv dikning av svavelrika sediment. Detta leder till oxidering av svavlet till svavelsyra och uppkomst av sura sulfatjordar. Syran löser upp mängder med toxiska metaller som spolas ut i vattendragen. Undersökningen visar att tiotusentals ton svavelsyra tillsammans med stora mängder metaller rinner till Larsmo-Öjasjön per år från sura sulfatjordar. Åarna bidrar med mest belastning, men den sammanlagda belastningen från de otaliga dikena och bäckarna är oväntat stor. Andra potentiella källor till försurningen, t.ex. muddringar och humussyror, beräknas vara obetydliga. Syra- och metallbelastningen varierar kraftigt med hydrologin, dvs. störst belastning sker under vår- och höstflöden. En eventuell klimatförändring kan ändra på avrinningsmönstret och orsaka mera belastning vintertid. Den årligt återkommande syra- och metallbelastningen kan ofta hindra lakens förökning, vilket kan ha större långtgående konsekvenser för fiskpopulationerna än de relativt sällsynta stora surchockerna med synlig fiskdöd. För att förebygga skador på vattendragen bör man undvika att dränera svavelrika sedimenten. På redan existerande sura sulfatjordar visade sig kontroll av grundvattennivån kunna möjliggöra en effektiverad markanvändning utan märkbart ökade miljökonsekvenser.
Resumo:
Collaboration is essential for successful new product development. In the preparation for ramp-up production collaboration between R&D and supply chain functions is crucial. This thesis examines the meaning of collaboration and the effects of collaboration between R&D and supply chain. The aim of this thesis is to analyse and advice on how to improve the collaboration between the research and development department and supply chain within the preparation for rampup process. This thesis begins by introducing the reader to the product development methodologies and collaboration literature. The following part of the thesis describes the current situation and the results of the qualitative research. The last part of the thesis will explain the improvement suggestions. The main improvement suggestions are clarification of the processes and responsibilities and the introduction of a kick-off meeting.
Resumo:
Wastes and side streams in the mining industry and different anthropogenic wastes often contain valuable metals in such concentrations their recovery may be economically viable. These raw materials are collectively called secondary raw materials. The recovery of metals from these materials is also environmentally favorable, since many of the metals, for example heavy metals, are hazardous to the environment. This has been noticed in legislative bodies, and strict regulations for handling both mining and anthropogenic wastes have been developed, mainly in the last decade. In the mining and metallurgy industry, important secondary raw materials include, for example, steelmaking dusts (recoverable metals e.g. Zn and Mo), zinc plant residues (Ag, Au, Ga, Ge, In) and waste slurry from Bayer process alumina production (Ga, REE, Ti, V). From anthropogenic wastes, waste electrical and electronic equipment (WEEE), among them LCD screens and fluorescent lamps, are clearly the most important from a metals recovery point of view. Metals that are commonly recovered from WEEE include, for example, Ag, Au, Cu, Pd and Pt. In LCD screens indium, and in fluorescent lamps, REEs, are possible target metals. Hydrometallurgical processing routes are highly suitable for the treatment of complex and/or low grade raw materials, as secondary raw materials often are. These solid or liquid raw materials often contain large amounts of base metals, for example. Thus, in order to recover valuable metals, with small concentrations, highly selective separation methods, such as hydrometallurgical routes, are needed. In addition, hydrometallurgical processes are also seen as more environmental friendly, and they have lower energy consumption, when compared to pyrometallurgical processes. In this thesis, solvent extraction and ion exchange are the most important hydrometallurgical separation methods studied. Solvent extraction is a mainstream unit operation in the metallurgical industry for all kinds of metals, but for ion exchange, practical applications are not as widespread. However, ion exchange is known to be particularly suitable for dilute feed solutions and complex separation tasks, which makes it a viable option, especially for processing secondary raw materials. Recovering valuable metals was studied with five different raw materials, which included liquid and solid side streams from metallurgical industries and WEEE. Recovery of high purity (99.7%) In, from LCD screens, was achieved by leaching with H2SO4, extracting In and Sn to D2EHPA, and selectively stripping In to HCl. In was also concentrated in the solvent extraction stage from 44 mg/L to 6.5 g/L. Ge was recovered as a side product from two different base metal process liquors with Nmethylglucamine functional chelating ion exchange resin (IRA-743). Based on equilibrium and dynamic modeling, a mechanism for this moderately complex adsorption process was suggested. Eu and Y were leached with high yields (91 and 83%) by 2 M H2SO4 from a fluorescent lamp precipitate of waste treatment plant. The waste also contained significant amounts of other REEs such as Gd and Tb, but these were not leached with common mineral acids in ambient conditions. Zn was selectively leached over Fe from steelmaking dusts with a controlled acidic leaching method, in which the pH did not go below, but was held close as possible to, 3. Mo was also present in the other studied dust, and was leached with pure water more effectively than with the acidic methods. Good yield and selectivity in the solvent extraction of Zn was achieved by D2EHPA. However, Fe needs to be eliminated in advance, either by the controlled leaching method or, for example, by precipitation. 100% Pure Mo/Cr product was achieved with quaternary ammonium salt (Aliquat 336) directly from the water leachate, without pH adjustment (pH 13.7). A Mo/Cr mixture was also obtained from H2SO4 leachates with hydroxyoxime LIX 84-I and trioctylamine (TOA), but the purities were 70% at most. However with Aliquat 336, again an over 99% pure mixture was obtained. High selectivity for Mo over Cr was not achieved with any of the studied reagents. Ag-NaCl solution was purified from divalent impurity metals by aminomethylphosphonium functional Lewatit TP-260 ion exchange resin. A novel preconditioning method, named controlled partial neutralization, with conjugate bases of weak organic acids, was used to control the pH in the column to avoid capacity losses or precipitations. Counter-current SMB was shown to be a better process configuration than either batch column operation or the cross-current operation conventionally used in the metallurgical industry. The raw materials used in this thesis were also evaluated from an economic point of view, and the precipitate from a waste fluorescent lamp treatment process was clearly shown to be the most promising.
Resumo:
The present study aimed to evaluate the leaching potential of Picloram in Ultisol columns under different rainfall amounts. For such, 30 treatments were evaluated (one soil associated with three levels of rainfall and ten depths).The experiments were arranged in a split-plot design, in a completely randomized design, with four replications. PVC columns of 10 cm in diameter and 50 cm in length were filled with these soils, moistened, and placed upright for 48 hours to drain the excess water. The herbicide was applied and rainfall simulations were carried out at specified intensities, according to the treatments, to force Picloram leaching. After 72 hours, all the columns were arranged in a horizontal position and opened lengthwise. Then, soil sampling was carried out every 5 cm of depth for subsequent herbicide extraction and quantification and analysis by high performance liquid chromatography. The remaining soil samples were placed in plastic pots, and, at the respective depths, the indicator species Cucumis sativus was sown. Twenty-one days after the emergence (DAE) of the indicator plants, evaluations were conducted to verify the symptoms of toxicity caused by Picloram in the plants. It was concluded that Picloram leaching is directly dependent on the volume of rain applied. The herbicide reached the deepest regions in the soil with the highest intensity of rain. The results obtained by bioassay were in agreement with those found by liquid chromatography.
Resumo:
Bio-ethanol has been used as a fuel additive in modern society aimed at reducing CO2-emissions and dependence on oil. However, ethanol is unsuitable as fuel supplement in higher proportions due to its physico-chemical properties. One option to counteract the negative effects is to upgrade ethanol in a continuous fixed bed reactor to more valuable C4 products such as 1-butanol providing chemical similarity with traditional gasoline components. Bio-ethanol based valorization products also have other end-uses than just fuel additives. E.g. 1-butanol and ethyl acetate are well characterised industrial solvents and platform chemicals providing greener alternatives. The modern approach is to apply heterogeneous catalysts in the investigated reactions. The research was concentrated on aluminium oxide (Al2O3) and zeolites that were used as catalysts and catalyst supports. The metals supported (Cu, Ni, Co) gave very different product profiles and, thus, a profound view of different catalyst preparation methods and characterisation techniques was necessary. Additionally, acidity and basicity of the catalyst surface have an important role in determining the product profile. It was observed that ordinary determination of acid strength was not enough to explain all the phenomena e.g. the reaction mechanism. One of the main findings of the thesis is based on the catalytically active site which originates from crystallite structure. As a consequence, the overall evaluation of different by-products and intermediates was carried out by combining the information. Further kinetic analysis was carried out on metal (Cu, Ni, Co) supported self-prepared alumina catalysts. The thesis gives information for further catalyst developments aimed to scale-up towards industrially feasible operations.
Resumo:
This study will concentrate on Product Data Management (PDM) systems, and sheet metal design features and classification. In this thesis, PDM is seen as an individual system which handles all product-related data and information. The meaning of relevant data is to take the manufacturing process further with fewer errors. The features of sheet metals are giving more information and value to the designed models. The possibility of implementing PDM and sheet metal features recognition are the core of this study. Their integration should make the design process faster and manufacturing-friendly products easier to design. The triangulation method is the basis for this research. The sections of this triangle are: scientific literature review, interview using the Delphi method and the author’s experience and observations. The main key findings of this study are: (1) the area of focus in triangle (the triangle of three different point of views: business, information exchange and technical) depends on the person’s background and their role in the company, (2) the classification in the PDM system (and also in the CAD system) should be done using the materials, tools and machines that are in use in the company and (3) the design process has to be more effective because of the increase of industrial production, sheet metal blank production and the designer’s time spent on actual design and (4) because Design For Manufacture (DFM) integration can be done with CAD-programs, DFM integration with the PDM system should also be possible.
Resumo:
Green sugarcane harvesting may promote great changes in the dynamics of herbicides in the environment. Our goal was to evaluate the influence of straw decomposition degree on leaching and weed (Ipomoea grandifolia) control efficacy by (14C) tebuthiuron and hexazinone. The presence of straw on the soil surface affected leaching, mainly for hexazinone (leaching reduced from 37 to 5% of the applied amount in the presence of straw). Overall, tebuthiuron showed more efficient control of Ipomoea than hexazinone. The straw decomposition degree affected only hexazinone efficacy that was lowest for the least decomposed straw. Further studies are needed to evaluate the effects of sugarcane straw on herbicides dissipation, particularly on volatilization and photolysis, to better predict their efficacy and environmental fate.
Resumo:
Mobility of atrazine in soil has contributed to the detection of levels above the legal limit in surface water and groundwater in Europe and the United States. The use of new formulations can reduce or minimize the impacts caused by the intensive use of this herbicide in Brazil, mainly in regions with higher agricultural intensification. The objective of this study was to compare the leaching of a commercial formulation of atrazine (WG) with a controlled release formulation (xerogel) using bioassay and chromatographic methods of analysis. The experiment was a split plot randomized block design with four replications, in a (2 x 6) + 1 arrangement. The main formulations of atrazine (WG and xerogel) were allocated in the plots, and the herbicide concentrations (0, 3200, 3600, 4200, 5400 and 8000 g ha-1), in the subplots. Leaching was determined comparatively by using bioassays with oat and chromatographic analysis. The results showed a greater concentration of the herbicide in the topsoil (0-4 cm) in the treatment with the xerogel formulation in comparison with the commercial formulation, which contradicts the results obtained with bioassays, probably because the amount of herbicide available for uptake by plants in the xerogel formulation is less than that available in the WG formulation.
Resumo:
Sulfentrazone leaching potential is dependent on soil properties such as strength and type of clay, organic matter content and pH, and may result in ineffectiveness of the product and contamination of groundwater. The objective of this study was to evaluate sulfentrazone leaching in five soils of the sugarcane region in the Northeast Region of Brazil, with different physical and chemical properties, by means of bioassay and high-performance liquid chromatography (HPLC) resolution. The experiment was conducted in a split plot in a completely randomized design. The plots had PVC columns with a 10 cm diameter and being 50 cm deep, filled with five different soil classes (quartzarenic neosol, haplic cambisol, yellowish-red latosol, yellowish-red acrisol, and haplic gleysol), and subplots for 10 depths in columns, 5 cm intervals. On top of the columns, sulfentrazone application was conducted and 12 hours later there was a simulated rainfall of 60 mm. After 72 hours, the columns were horizontally placed and longitudinally open, divided into sections of 5.0 cm. In the center of each section of the columns, soil samples were collected for chromatographic analyses and sorghum sowing was carried out as an indicator plant. The bioassay method was more sensitive to detect the presence of sulfentrazone in an assessment for chromatography soil, having provided greater herbicide mobility in quartzarenic neosol and yellowish-red latosol, whose presence was detected by the indicator plant to a depth of 45 and 35 cm, respectively. In the other soils, sulfentrazone was detected up to 20 cm deep. The intense mobility of sulfentrazone in quartzarenic neosol may result in herbicide efficiency loss in the soil because the symptoms of intoxication and the amount of herbicide detected via silica were highest between 15 cm and 35 cm depth regarding the soil surface layer (0-10 cm), indicating that sulfentrazone should be avoided in soils with such characteristics.