987 resultados para Material Obturador de Canal Radicular
Resumo:
Bioactive materials with osteostimulation properties are of great importance to promote osteogenic differentiation of human bone marrow stromal cells (hBMSCs) for potential bone regeneration. We have recently synthesized nagelschmidtite (NAGEL, Ca7Si2P2O16) ceramic powders which showed excellent apatite-mineralization ability. The aim of this study was to investigate the interaction of hBMSCs with NAGEL bioceramic bulks and their ionic extracts, and to explore the osteostimulation properties of NAGEL bioceramics and the possible molecular mechanism. The cell attachment, proliferation, bone-related gene expression (ALP, OPN and OCN) and WNT signalling pathways (WNT3a, FZD6, AXIN2 and CTNNB) of hBMSCs cultured on NAGEL bioceramic disks were systematically studied. We further investigated the biological effects of ionic products from NAGEL powders on cell proliferation and osteogenic differentiation of hBMSCs by culturing cells with NAGEL extracts. Furthermore, the effect of NAGEL bioceramics on the osteogenic differentiation in hBMSCs was also investigated with the addition of cardamonin, a WNT inhibitor. The results showed that NAGEL bioceramic disks supported the attachment and proliferation of hBMSCs, and significantly enhanced the bone-related gene expression and WNT signalling pathway of hBMSCs, compared to conventional beta-tricalcium phosphate (β-TCP) bioceramic disks and blank controls. The ionic products from NAGEL powders also significantly promoted the proliferation, bone and WNT-related gene expression of hBMSCs. It was also identified that NAGEL bioceramics could bypass the action of the WNT inhibitor (10 μM) to stimulate the selected osteogenic genes in hBMSCs. Our results suggest that NAGEL bioceramics possess excellent in vitro osteostimulation properties. The possible mechanism for the osteostimulation may be directly related to the released Si, Ca and P-containing ionic products from NAGEL bioceramics which activate bone-related gene expression and WNT signalling pathway of hBMSCs. The present study suggests that NAGEL bioceramics are a potential bone regeneration material with significant osteostimulation capacity.
Resumo:
A new set of primitive extraterrestrial materials collected in the Earth's stratosphere include Chondritic Porous Aggregates (CPA's) [1]. CPAs have a complex and variable mineralogy [1-3] that include 'organic compounds' [4,5] and poorly graphitised carbon (PGC)[6]. This study presents a continuation of our detailed Analytical Electron Microscope study on carbon-rich CPA W7029*A from the JSC Cosmic Dust Collection. This CPA is an uncontaminated sample that survived atmospheric entry without appreciable alteration [7] and which contains ~44% carbonaceous material. The carbonaceous composition of selected particles was confirmed by Electron Energy Loss Spectroscopy and Selected Area Electron Diffraction (SAED). Possible carbonaceous contaminants introduced by specimen preparation techniques are easily recognised from indigenous CPA carbon particles [8] and do not bias our interpretations.
Resumo:
Most commonly, residents are always arguing about the satisfaction of sustainability and quality of their high rise residential property. This paper aim is to maintain the best quality satisfaction of the floor materials by introducing the whole life cycle costing approach to the property manager of the public housing in Johor. This paper looks into the current situation of floor material of two public housings in Johor, Malaysia and testing the whole life cycle costing approach towards them. The cost figures may be implemented to justify higher investments, for examples, in the quality or flexibility of building solutions through a long-term cost reduction. The calculation and the literature review are conducted. The questionnaire surveys of two public housings were conducted to make clear the occupants’ evaluation about the actual quality conditions of the floor material in their house. As a result, the quality of floor material based on the whole life cycle costing approach is one of the best among their previous decision making tool that was applied. Practitioners can benefit from this paper as it provides information on calculating the whole life costing and making the decisions for floor material selection for their properties.
Resumo:
excerpt: from soil and stone is a work consisting of fifty drawings on paper organised in a grid. Each drawing is small, only 19 by 14 centimetres, and set out in portrait format. They each reference, either explicitly or abstractly, natural phenomena. These include plant forms, pollens, seeds, pods, and leaf shapes and each is painted with a dizzying and liquid array of techniques and technical finesse. Colour is used sparingly but tellingly, and all are generously and wetly composed, with each seeming to flow into the necessary rightness of composition. Within the overall work the feel is sometimes of the archive, a personal kind where pressed flowers are stumbled upon within a book. At other times they seem to image the stellar as one confronts the immensity of some planet suspended in the void. Again, as a recurring theme in Reynolds’ oeuvre, the notion of the taxonomy is sounded. The drawings are laid out to display difference and reveal through contrast essence. It is a mapping that illuminates a generous plentitude.
Resumo:
There exists an important tradition of content analyses of aggression in sexually explicit material. The majority of these analyses use a definition of aggression that excludes consent. This article identifies three problems with this approach. First, it does not distinguish between aggression and some positive acts. Second, it excludes a key element of healthy sexuality. Third, it can lead to heteronormative definitions of healthy sexuality. It would be better to use a definition of aggression such as Baron and Richardson's (1994) in our content analyses, that includes a consideration of consent. A number of difficulties have been identified with attending to consent but this article offers solutions to each of these.
Resumo:
Water and ammonium retention by sandy soils may be low and result in leaching of applied fertiliser. To increase water and nutrient retention, zeolite is sometimes applied as a soil ameliorant for high value land uses including turf and horticulture. We have used a new modified kaolin material (MesoLite) as a soil amendment to test the efficiency of NH4+ retention and compared the results with natural zeolite. MesoLite is made by caustic reaction of kaolin at temperature between 80-95°C; although it has a moderate surface area, its cation exchange capacity is very high;(SA=13m2/g,CEC=500meq/100g). A 13cm tall sand column filled with ~450g of sandy soil homogeneously mixed with 1, 2, 4, and 8g of MesoLite or natural zeolite per 1kg of soil was prepared. After saturation with local bore water, concentrated ammonium sulfate solution was injected at the base. Then, bore water was passed from bottom to top through the column at amounts up to 6 pore volumes and at a constant flow rate of 10ml/min using a peristaltic pump. Concentrations of leached NH4+ were determined using an AutoAnalyser. The concentration of NH4+ leached from the column with 0.4% MesoLite was greatly (90%) reduced relative to unamended soil. Under these conditions NH4+ retention by the soil-MesoLite mixture was 11.5 times more efficient than the equivalent soil-natural zeolite mixture. Glasshouse experiments conducted in a separate study show that NH4+ adsorbed by MesoLite is available to plants.
Resumo:
A synthetic reevesite-like material has been shown to decolorize selected dyes and degrade phenolic contaminants photocatalytically in water when irradiated with visible light. This material can photoactively decolorize dyes such as bromophenol blue, bromocresol green, bromothymol blue, thymol blue and methyl orange in less than 15 min under visible light radiation in the absence of additional oxidizing agents. Conversely, phenolic compounds suc has phenol, p-chlorophenol and p-nitrophenol are photocat- alytically degraded in approximately 3hwith additional H2O2 when irradiated with visible light. These reactions offer potentially energy effective pathways for the removal of recalcitrant organic waste contaminants.
Resumo:
This chapter investigates the relationship between technical and operational skills and the development of conceptual knowledge and literacy in Media Arts learning. It argues that there is a relationship between the stories, expressions and ideas that students aim to produce with communications media, and their ability to realise these in material form through technical processes in specific material contexts. Our claim is that there is a relationship between the technical and the operational, along with material relations and the development of conceptual knowledge and literacy in media arts learning. We place more emphasis on the material aspects of literacy than is usually the case in socio-cultural accounts of media literacy. We provide examples from a current project to demonstrate that it is just as important to address the material as it is the discursive and conceptual when considering how students develop media literacy in classroom spaces.
Resumo:
This thesis examines the role of government as proprietor, preserver and user of copyright material under the Copyright Act 1968 (Cth) and the policy considerations which Australian law should take into account in that role. There are two recurring themes arising in this examination which are significant to the recommendations and conclusions. The first is whether the needs and status of government should be different from private sector institutions, which also obtain copyright protection under the law. This theme stems from the 2005 Report on Crown Copyright by the Copyright Law Review Committee and the earlier Ergas Committee Report which are discussed in Chapters 2 and 8 of this thesis. The second is to identify the relationship between government copyright law and policy, national cultural policy and fundamental governance values. This theme goes to the essence of the thesis. For example, does the law and practice of government copyright properly reflect technological change in the way we now access and use information and does it facilitate the modern information management principles of government? Is the law and practice of government copyright consistent with the greater openness and accountability of government? The thesis concludes that government copyright law and practice in each of the three governmental roles recognised under the Copyright Act 1968 has not responded adequately to the information age and to the desire and the ability of individuals to access information quickly and effectively. The solution offered in this thesis is reform of the law and of public policy that is in step with access to information policy, the promotion of better communication and interaction with the community, and the enhanced preservation of government and private copyright materials for reasons of government accountability, effective administration and national culture and heritage.
Resumo:
Utilising archival human breast cancer biopsy material we examined the stromal/epithelial interactions of several matrix metalloproteinases (MMPs) using in situ-RT-PCR (IS-RT-PCR). In breast cancer, the stromal/epithelial interactions that occur, and the site of production of these proteases, are central to understanding their role in invasive and metastatic processes. We examined MT1-MMP (MMP-14, membrane type-1-MMP), MMP-1 (interstitial collagenase) and MMP-3 (stromelysin-1) for their localisation profile in progressive breast cancer biopsy material (poorly differentiated invasive breast carcinoma (PDIBC), invasive breast carcinomas (IBC) and lymph node metastases (LNM)). Expression of MT1-MMP, MMP-1 and MMP-3 was observed in both the tumour epithelial and surrounding stromal cells in most tissue sections examined. MT1-MMP expression was predominantly localised to the tumour component in the pre-invasive lesions. MMP-1 gene expression was relatively well distributed between both tissue compartments, while MMP-3 demonstrated highest expression levels in the stromal tissue surrounding the epithelial tumour cells. The results demonstrate the ability to distinguish compartmental gene expression profiles using IS-RT-PCR. Further, we suggest a role for MT1-MMP in early tumour progression, expression of MMP-1 during metastasis and focal expression pattern of MMP-3 in areas of expansion. These expression profiles may provide markers for early breast cancer diagnoses and present potential therapeutic targets.
Resumo:
Literacy Theories for the Digital Age insightfully brings together six essential approaches to literacy research and educational practice. The book provides powerful and accessible theories for readers, including Socio-cultural, Critical, Multimodal, Socio-spatial, Socio-material and Sensory Literacies. The brand new Sensory Literacies approach is an original and visionary contribution to the field, coupled with a provocative foreword from leading sensory anthropologist David Howes. This dynamic collection explores a legacy of literacy research while showing the relationships between each paradigm, highlighting their complementarity and distinctions. This highly relevant compendium will inspire readers to explore new frontiers of thought and practice in times of diversity and technological change.
Resumo:
Injured bone initiates the healing process by forming a blood clot at the damaged site. However, in severe damage, synthetic bone implants are used to provide structural integrity and restore the healing process. The implant unavoidably comes into direct contact with whole blood, leading to a blood clot formation on its surface. Despite this, most research in bone tissue engineering virtually ignores the important role of a blood clot in supporting healing. Surface chemistry of a biomaterial is a crucial property in mediating blood-biomaterials interactions, and hence the formation of the resultant blood clot. Surfaces presenting mixtures of functional groups carboxyl (–COOH) and methyl (–CH3) have been shown to enhance platelet response and coagulation activation, leading to the formation of fibrin fibres. In addition, it has been shown that varying the compositions of these functional groups and the length of alkyl groups further modulate the immune complement response. In this study, we hypothesised that a biomaterial surface with mixture of –COOH/–CH3(methyl), –CH2CH3 (ethyl) or –(CH2)3CH3 (butyl) groups at different ratios would modulate blood coagulation and complement activation, and eventually tailor the structural and functional properties of the blood clot formed on the surface, which subsequently impacts new bone formation. Firstly, we synthesised a series of materials composed of acrylic acid (AA), and methyl (MMA), ethyl (EMA) or butyl methacrylates (BMA) at different ratios and coated on the inner surfaces of incubation vials. Our surface analysis showed that the amount of –COOH groups on the surface coatings was lower than the ratios of AA prepared in the materials even though the surface content of –COOH groups increased with increasing in AA ratios. It was indicated that the surface hydrophobicity increased with increasing alkyl chain length: –CH 3 > –CH2CH3 > –(CH2)3CH3, and decreased with increasing –COOH groups. No significant differences in surface hydrophobicity was found on surfaces with –CH3 and –CH2CH3 groups in the presence of –COOH groups. The material coating was as smooth as uncoated glass and without any major flaws. The average roughness of material-coated surface (3.99 ± 0.54 nm) was slightly higher than that of uncoated glass surface (2.22 ± 0.29 nm). However, no significant differences in surface average roughness was found among surfaces with the same functionalities at different –COOH ratios nor among surfaces with different alkyl groups but the same –COOH ratios. These suggested that the surface functional groups and their compositions had a combined effect on modulating surface hydrophobicity but not surface roughness. The second part of our study was to investigate the effect of surface functional groups and their compositions on blood cascade activation and structural properties of the formed clots. It was found that surfaces with –COOH/–(CH2)3CH3 induced a faster coagulation activation than those with –COOH/–CH3 and –CH2CH3, regardless of the –COOH ratios. An increase in –COOH ratios on –COOH/–CH3 and –CH2CH3 surfaces decreased the rate of activation. Moreover, all material-coated surfaces markedly reduced the complement activation compared to uncoated glass surfaces, and the pattern of complement activation was entirely similar to that of surface-induced coagulation, suggesting there is an interaction between two cascades. The clots formed on material-coated surfaces had thicker fibrin with a tighter network at the exterior when compared to uncoated glass surfaces. Compared to the clot exteriors, thicker fibrins with a loose network were found in clot interiors. Coated surfaces resulted in more rigid clots with a significantly slower fibrinolysis after 1 h of lysis when compared to uncoated glass surfaces. Significant differences in fibrinolysis after 1 h of lysis among clots on material-coated surfaces correlated well with the differences in fibrin thickness and density at clot exterior. In addition, more growth factors were released during clot formation than during clot lysis. From an intact clot, there was a correlation between the amount of PDGF-AB release and fibrin density. Highest amount of PDGF-AB was released from clots formed on surfaces with 40% –COOH/60% –CH 3 (i.e. 65MMA). During clot lysis, the release of PDGF-AB also correlated with the fibrinolytic rate while the release of TGF-â1 was influenced by the fibrin thickness. This suggested that different clot structures led to different release profiles of growth factors in clot intact and degrading stages. We further validated whether the clots formed on material-coatings provide the microenvironment for improved bone healing by using a rabbit femoral defect model. In this pilot study, the implantation of clots formed on 65MMA coatings significantly increased new bone formation with enhanced chondrogenesis, osteoblasts activity and vascularisation, but decreased inflammatory macrophage number at the defects after 4 weeks when compared to commercial bone grafts ChronOSTM â-TCP granules. Empty defects were observed when blood clot formation was inhibited. In summary, our study demonstrated that surface functional groups and their relative ratios on material coatings synergistically modulate activation of blood cascades, resultant fibrin architecture, rigidity, susceptibility to fibrinolysis as well as growth factor release of the formed clots, which ultimately alter the healing microenvironment of injured bones.
Resumo:
Sandwich panels comprising steel facings and a polystyrene foam core are increasingly used as roof and wall claddings in buildings in Australia. When they are subjected to loads causing bending and/or axial compression, the steel plate elements of their profiled facing are susceptible to local buckling. However, when compared to panels with no foam core, they demonstrate significantly improved local buckling behaviour because they are supported by foam. In order to quantify such improvements and to validate the use of available design buckling stress formulae, an investigation using finite element analyses and laboratory experiments was carried out on steel plates that are commonly used in Australia of varying yield stress and thickness supported by a polystyrene foam core. This paper presents the details of this investigation, the buckling results and their comparison with available design buckling formulae.