965 resultados para Magnetic recording media
Resumo:
This paper introduces Sapporo World Window (hereafter SWW), an interactive social media mash-up deployed in a newly built urban public underground space utilising ten public displays and urban dwellers’ mobile phones. SWW enables users to share their favourite locations with fellow citizens and visitors through integrating various social media contents to a coherent whole. The system aims to engage citizens in socio-cultural and technological interactions, turning the underground space into a creative and lively social space. We present first insight from an initial user study in a real world setting.
Resumo:
Modern technologies mean that the principles of quality arts education are the same (as they ever were) and different. Discussion in this paper is based on a small research project that used art as pedagogy, art as research method and, for the young children participants, celebrated art for art's sake. The project was designed with two aims. Firstly, the authors were interested in how young children engage with media as a strand of the arts. This also informed some of their thinking around the debates over Information and Communication Technology (ICT) as a process for the production of a media text. Secondly, they were interested in the extent to which digital media could enable young children to make their learning visible.
Resumo:
Hyperthermia and local drug delivery have been proposed the potential therapeutic approaches for bone defects resulting from malignant bone tumors. Development of bioactive materials with magnetic and drug-delivery properties may potentially meet this target. The aim of this study is to develop a multifunctional mesoporous bioactive glass (MBG) scaffold system for both hyperthermia and local-drug delivery application potentially. For this aim, Iron (Fe) containing MBG (Fe-MBG) scaffolds with hierarchically large pores (300-500 µm) and fingerprint-like mesopores (4.5 nm) have been successfully prepared. The effect of Fe on the mesopore structure, physiochemical, magnetism, drug delivery and biological properties of MBG scaffolds has been systematically investigated. The results showed that the morphology of the mesopore varied from straight channels to curved fingerprint-like channels after incorporated parts of Fe into MBG scaffolds. The magnetism magnitude of MBG scaffolds can be tailored by controlling Fe contents. Furthermore, the incorporating of Fe into mesoporous MBG glass scaffolds enhanced the mitochondrial activity and bone-relative gene (ALP and OCN) expression of human bone marrow mesenchymal stem cells (BMSCs) on the scaffolds. The obtained Fe-MBG scaffolds also possessed high specific surface areas and sustained drug delivery. Therefore, Fe-MBG scaffolds are magnetic, degradable and bioactive. The multifunction of Fe-MBG scaffolds indicates that there is a great potential for Fe-MBG scaffolds to be used for the therapy and regeneration of large-bone defects caused by malignant bone tumors through the combination of hyperthermia, local drug delivery and their osteoconductivity.
Resumo:
The increasing ubiquity of digital technology, internet services and location-aware applications in our everyday lives allows for a seamless transitioning between the visible and the invisible infrastructure of cities: road systems, building complexes, information and communication technology, and people networks create a buzzing environment that is alive and exciting. Driven by curiosity, initiative and interdisciplinary exchange, the Urban Informatics Research Lab at Queensland University of Technology (QUT), Brisbane, Australia, is an emerging cluster of people interested in research and development at the intersection of people, place and technology with a focus on cities, locative media and mobile technology. This paper introduces urban informatics as a transdisciplinary practice across people, place and technology that can aid local governments, urban designers and planners in creating responsive and inclusive urban spaces and nurturing healthy cities. Three challenges are being discussed. First, people, and the challenge of creativity explores the opportunities and challenges of urban informatics that can lead to the design and development of new tools, methods and applications fostering participation, the democratisation of knowledge, and new creative practices. Second, technology, and the challenge of innovation examines how urban informatics can be applied to support user-led innovation with a view to promote entrepreneurial ideas and creative industries. Third, place, and the challenge of engagement discusses the potential to establish places within cities that are dedicated to place-based applications of urban informatics with a view to deliver community and civic engagement strategies.
Resumo:
Protecting slow sand filters (SSFs) from high-turbidity waters by pretreatment using pebble matrix filtration (PMF) has previously been studied in the laboratory at University College London, followed by pilot field trials in Papua New Guinea and Serbia. The first full-scale PMF plant was completed at a water-treatment plant in Sri Lanka in 2008, and during its construction, problems were encountered in sourcing the required size of pebbles and sand as filter media. Because sourcing of uniform-sized pebbles may be problematic in many countries, the performance of alternative media has been investigated for the sustainability of the PMF system. Hand-formed clay balls made at a 100-yearold brick factory in the United Kingdom appear to have satisfied the role of pebbles, and a laboratory filter column was operated by using these clay balls together with recycled crushed glass as an alternative to sand media in the PMF. Results showed that in countries where uniform-sized pebbles are difficult to obtain, clay balls are an effective and feasible alternative to natural pebbles. Also, recycled crushed glass performed as well as or better than silica sand as an alternative fine media in the clarification process, although cleaning by drainage was more effective with sand media. In the tested filtration velocity range of ð0:72–1:33Þ m=h and inlet turbidity range of (78–589) NTU, both sand and glass produced above 95% removal efficiencies. The head loss development during clogging was about 30% higher in sand than in glass media.
Resumo:
This short article explores the ways in which the news media's reporting about Indigenous Australians can be improved. The article looks at how journalists predominantly portray Indigenous people in vulnerable circumstances. Journalists also often misrepresent Indigenous Australians in ways that can potentially harm individuals and communities. In forums about the media, it is common to hear Indigenous people say that they ignore non-Indigenous news services due to such problems, and they rely on community media instead. Even so, the non-Indigenous media has a huge impact on public understanding and government policies, which directly influence the living conditions of Indigenous people. Thus it remains important to consider how the performance of non-Indigenous media can be improved, and the article discusses the steps that are needed if this is to happen.
Resumo:
We present a mass-conservative vertex-centred finite volume method for efficiently solving the mixed form of Richards’ equation in heterogeneous porous media. The spatial discretisation is particularly well-suited to heterogeneous media because it produces consistent flux approximations at quadrature points where material properties are continuous. Combined with the method of lines, the spatial discretisation gives a set of differential algebraic equations amenable to solution using higher-order implicit solvers. We investigate the solution of the mixed form using a Jacobian-free inexact Newton solver, which requires the solution of an extra variable for each node in the mesh compared to the pressure-head form. By exploiting the structure of the Jacobian for the mixed form, the size of the preconditioner is reduced to that for the pressure-head form, and there is minimal computational overhead for solving the mixed form. The proposed formulation is tested on two challenging test problems. The solutions from the new formulation offer conservation of mass at least one order of magnitude more accurate than a pressure head formulation, and the higher-order temporal integration significantly improves both the mass balance and computational efficiency of the solution.
Resumo:
Planar magnetic elements are becoming a replacement for their conventional rivals. Among the reasons supporting their application, is their smaller size. Taking less bulk in the electronic package is a critical advantage from the manufacturing point of view. The planar structure consists of the PCB copper tracks to generate the desired windings .The windings on each PCB layer could be connected in various ways to other winding layers to produce a series or parallel connection. These windings could be applied coreless or with a core depending on the application in Switched Mode Power Supplies (SMPS). Planar shapes of the tracks increase the effective conduction area in the windings, brings about more inductance compared to the conventional windings with the similar copper loss case. The problem arising from the planar structure of magnetic inductors is the leakage current between the layers generated by a pulse width modulated voltage across the inductor. This current value relies on the capacitive coupling between the layers, which in its turn depends on the physical parameters of the planar scheme. In order to reduce this electrical power dissipation due to the leakage current and Electromagnetic Interference (EMI), reconsideration in the planar structure might be effective. The aim of this research is to address problem of these capacitive coupling in planar layers and to find out a better structure for the planar inductance which offers less total capacitive coupling and thus less thermal dissipation from the leakage currents. Through Finite Element methods (FEM) several simulations have been carried out for various planar structures. The labs prototypes of these structures are built with the similar specification of the simulation cases. The capacitive couplings of the samples are determined with Spectrum Analyser whereby the test analysis verified the simulation results.
Resumo:
For decades, indeed centuries, the Scottish media have been a source of national pride. Alongside the education system, the Church of Scotland and the legal apparatus the media have been rightly viewed as a distinctive Scottish cultural institution, a key part of what makes Scotland a nation rather than a region. Scotland has long sustained, per capita, one of the richest and most diverse media systems in the world, encapsulating a heady mix of local newspapers such as the West Highland Free Press, national [i.e., Scotland-wide] newspapers and broadcast outlets such as BBC Scotland and the Scotsman, and UK-based media with Scottish editions such as the Sun and the Mail. These media have reflected and fuelled what is in turn a distinctive Scottish political identity separate from, though connected with that of the United Kingdom as a whole. There has, for example, been no major paper with a pro-Tory editorial line north of the border for longer than most of us can remember, reflecting (and perhaps contributing to) the Conservative Party’s poor showing in successive Scottish elections.
Resumo:
This chapter will explore the performance of the Scottish media in post-devolution political life, before turning its attention to the specific coverage of the 2007 election.
Resumo:
This magazine, written by Melissa Giles, features three Brisbane-based media organisations: Radio 4RPH, Queensland Pride and 98.9FM. The PDF file on this website contains a text-only version of the magazine. Contact the author if you would like a copy of the text-only EPUB file or a copy of the full digital magazine with images. An audio version of the magazine is available at http://eprints.qut.edu.au/41729/
Resumo:
In this chapter, Shaleen Prowse describes teaching strategies for media education and information communication technologies (ICT) and how young children’s experiences with tools of technology at home are an important starting point for building learning experiences within the classroom setting. She illustrates how digital cameras and computer editing software assist young children to share their learning.