996 resultados para Magnetic elements
Resumo:
THE COMPLEXES of pyridine-l-oxide and 2- and 4-substituted pyridine-l-oxides have been investigated previously[l]. The complexes of 3-substituted pyfidine-l-oxides, however, have received little attention. The rare-earth complexes of pyridine-Ioxide[l, 2], 4-methylpyridine- l-oxide [1] and 2,6- dimethylpyfidine-l-oxide[3,4] have been reported earlier. The present paper deals with the isolation and characterisation of 3-methylpyridine-l-oxide (3-Picoline-N-oxide, 3-PicNO) complexes with rare-earth perchlorates.
Resumo:
Mxr1p (methanol expression regulator 1) functions as a key regulator of methanol metabolism in the methylotrophic yeast Pichia pastoris. In this study, a recombinant Mxr1p protein containing the N-terminal zinc finger DNA binding domain was overexpressed and purified from E coli cells and its ability to bind to promoter sequences of AOXI encoding alcohol oxidase was examined. In the AOXI promoter, Mxr1p binds at six different regions. Deletions encompassing these regions result in a significant decrease in AOXI promoter activity in vivo. Based on the analysis of AOXI promoter sequences, a consensus sequence for Mxr1p binding consisting of a core 5' CYCC 3' motif was identified. When the core CYCC sequence is mutated to CYCA, CYCT or CYCM (M = 5-methylcytosine), Mxr1p binding is abolished. Though Mxr1p is the homologue of Saccharomyces cerevisiae Adr1p transcription factor, it does not bind to Adr1p binding site of S. cerevisiae alcohol dehydrogenase promoter (ADH2UAS1). However, two point mutations convert ADH2UAS1 into an Mxr1p binding site. The identification of key DNA elements involved in promoter recognition by Mxr1p is an important step in understanding its function as a master regulator of the methanol utilization pathway in P. pastoris.
Resumo:
The general expression for the Mössbauer lineshape in the presence of radio frequency perturbation derived earlier has been further extended. This involves the calculation of the off-diagonal matrix elements of the correlation function. The results show that there are additional transition lines owing to the nuclear magnetic resonance induced transition in the resonance region. These lines do not show any broadening or splitting. As an example the effect of the rf field on 57Fe nuclei is discussed.
Resumo:
The solution of the steady laminar incompressible nonsimilar magneto-hydrodynamic boundary layer flow and heat transfer problem with viscous dissipation for electrically conducting fluids over two-dimensional and axisymmetric bodies with pressure gradient and magnetic field has been presented. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. The computations have been carried out for flow over a cylinder and a sphere. The results indicate that the magnetic field tends to delay or prevent separation. The heat transfer strongly depends on the viscous dissipation parameter. When the dissipation parameter is positive (i.e. when the temperature of the wall is greater than the freestream temperature) and exceeds a certain value, the hot wall ceases to be cooled by the stream of cooler air because the ‘heat cushion’ provided by the frictional heat prevents cooling whereas the effect of the magnetic field is to remove the ‘heat cushion’ so that the wall continues to be cooled. The results are found to be in good agreement with those of the local similarity and local nonsimilarity methods except near the point of separation, but they are in excellent agreement with those of the difference-differential technique even near the point of separation.
Resumo:
Volatility is central in options pricing and risk management. It reflects the uncertainty of investors and the inherent instability of the economy. Time series methods are among the most widely applied scientific methods to analyze and predict volatility. Very frequently sampled data contain much valuable information about the different elements of volatility and may ultimately reveal the reasons for time varying volatility. The use of such ultra-high-frequency data is common to all three essays of the dissertation. The dissertation belongs to the field of financial econometrics. The first essay uses wavelet methods to study the time-varying behavior of scaling laws and long-memory in the five-minute volatility series of Nokia on the Helsinki Stock Exchange around the burst of the IT-bubble. The essay is motivated by earlier findings which suggest that different scaling laws may apply to intraday time-scales and to larger time-scales, implying that the so-called annualized volatility depends on the data sampling frequency. The empirical results confirm the appearance of time varying long-memory and different scaling laws that, for a significant part, can be attributed to investor irrationality and to an intraday volatility periodicity called the New York effect. The findings have potentially important consequences for options pricing and risk management that commonly assume constant memory and scaling. The second essay investigates modelling the duration between trades in stock markets. Durations convoy information about investor intentions and provide an alternative view at volatility. Generalizations of standard autoregressive conditional duration (ACD) models are developed to meet needs observed in previous applications of the standard models. According to the empirical results based on data of actively traded stocks on the New York Stock Exchange and the Helsinki Stock Exchange the proposed generalization clearly outperforms the standard models and also performs well in comparison to another recently proposed alternative to the standard models. The distribution used to derive the generalization may also prove valuable in other areas of risk management. The third essay studies empirically the effect of decimalization on volatility and market microstructure noise. Decimalization refers to the change from fractional pricing to decimal pricing and it was carried out on the New York Stock Exchange in January, 2001. The methods used here are more accurate than in the earlier studies and put more weight on market microstructure. The main result is that decimalization decreased observed volatility by reducing noise variance especially for the highly active stocks. The results help risk management and market mechanism designing.
Resumo:
The nature of the neutral curves for the stability of a Helmholtz velocity profile in a stratified, Boussinesq fluid in the presence of a uniform magnetic field for the cases (1) an infinite fluid (2) a semi-infinite fluid with a rigid boundary is discussed.
Resumo:
The effect of suction on the steady laminar incompressible boundarylayer flow for a stationary infinite disc with or without magnetic field, when the fluid at a large distance from the surface of the disc undergoes a solid body rotation, has been studied. The governing coupled nonlinear equations have been solved numerically using the shooting method with least square convergence criterion. It has been found that suction tends to reduce the velocity overshoot and damp the oscillation.
Resumo:
Individual copies of tRNA1Gly from within the multigene family in Bombyx mori could be classified based on in vitro transcription in homologous nuclear extracts into three categories of highly, moderately, or weakly transcribed genes. Segregation of the poorly transcribed gene copies 6 and 7, which are clustered in tandem within 425 base pairs, resulted in enhancement of their individual transcription levels, but the linkage itself had little influence on the transcriptional status. For these gene copies, when fused together generating a single coding region, transcription was barely detectable, which suggested the presence of negatively regulating elements located in the far flanking sequences. They exerted the silencing effect on transcription overriding the activity of positive regulatory elements. Systematic analysis of deletion, chimeric, and mutant constructs revealed the presence of a sequence element TATATAA located beyond 800 nucleotides upstream to the coding region acting as negative modulator, which when mutated resulted in high level transcription. Conversely, a TATATAA motif reintroduced at either far upstream or far downstream flanking regions exerted a negative effect on transcription. The location of cis-regulatory sequences at such farther distances from the coding region and the behavior of TATATAA element as negative regulator reported here are novel. These element(s) could play significant roles in activation or silencing of genes from within a multigene family, by recruitment or sequestration of transcription factors.
Resumo:
The flow, heat and mass transfer problem for boundary layer swirling flow of a laminar steady compressible electrically conducting gas with variable properties through a conical nozzle and a diffuser with an applied magnetic field has been studied. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme after they have been transformed into dimensionless form using the modified Lees transformation. The results indicate that the skin friction and heat transfer strongly depend on the magnetic field, mass transfer and variation of the density-viscosity product across the boundary layer. However, the effect of the variation of the density-viscosity product is more pronounced in the case of a nozzle than in the case of a diffuser. It has been found that large swirl is required to produce strong effect on the skin friction and heat transfer. Separationless flow along the entire length of the diffuser can be obtained by applying appropriate amount of suction. The results are found to be in good agreement with those of the local nonsimilarity method, but they differ quite significantly from those of the local similarity method.
Resumo:
The unconfined aquifer of the Continental Terminal in Niger was investigated by magnetic resonance sounding (MRS) and by 14 pumping tests in order to improve calibration of MRS outputs at field scale. The reliability of the standard relationship used for estimating aquifer transmissivity by MRS was checked; it was found that the parametric factor can be estimated with an uncertainty a parts per thousand currency sign150% by a single point of calibration. The MRS water content (theta (MRS)) was shown to be positively correlated with the specific yield (Sy), and theta (MRS) always displayed higher values than Sy. A conceptual model was subsequently developed, based on estimated changes of the total porosity, Sy, and the specific retention Sr as a function of the median grain size. The resulting relationship between theta (MRS) and Sy showed a reasonably good fit with the experimental dataset, considering the inherent heterogeneity of the aquifer matrix (residual error is similar to 60%). Interpreted in terms of aquifer parameters, MRS data suggest a log-normal distribution of the permeability and a one-sided Gaussian distribution of Sy. These results demonstrate the efficiency of the MRS method for fast and low-cost prospection of hydraulic parameters for large unconfined aquifers.
Resumo:
The steady MHD mixed convection flow of a viscoelastic fluid in the vicinity of two-dimensional stagnation point with magnetic field has been investigated under the assumption that the fluid obeys the upper-convected Maxwell (UCM) model. Boundary layer theory is used to simplify the equations of motion. induced magnetic field and energy which results in three coupled non-linear ordinary differential equations which are well-posed. These equations have been solved by using finite difference method. The results indicate the reduction in the surface velocity gradient, surface heat transfer and displacement thickness with the increase in the elasticity number. These trends are opposite to those reported in the literature for a second-grade fluid. The surface velocity gradient and heat transfer are enhanced by the magnetic and buoyancy parameters. The surface heat transfer increases with the Prandtl number, but the surface velocity gradient decreases.
Resumo:
We present here a theoretical approach to compute the molecular magnetic anisotropy parameters, D (M) and E (M) for single molecule magnets in any given spin eigenstate of exchange spin Hamiltonian. We first describe a hybrid constant M (S) valence bond (VB) technique of solving spin Hamiltonians employing full spatial and spin symmetry adaptation and we illustrate this technique by solving the exchange Hamiltonian of the Cu6Fe8 system. Treating the anisotropy Hamiltonian as perturbation, we compute the D (M)and E(M) values for various eigenstates of the exchange Hamiltonian. Since, the dipolar contribution to the magnetic anisotropy is negligibly small, we calculate the molecular anisotropy from the single-ion anisotropies of the metal centers. We have studied the variation of D (M) and E(M) by rotating the single-ion anisotropies in the case of Mn12Ac and Fe-8 SMMs in ground and few low-lying excited states of the exchange Hamiltonian. In both the systems, we find that the molecular anisotropy changes drastically when the single-ion anisotropies are rotated. While in Mn12Ac SMM D (M) values depend strongly on the spin of the eigenstate, it is almost independent of the spin of the eigenstate in Fe-8 SMM. We also find that the D (M)value is almost insensitive to the orientation of the anisotropy of the core Mn(IV) ions. The dependence of D (M) on the energy gap between the ground and the excited states in both the systems has also been studied by using different sets of exchange constants.
Resumo:
Two new neutral copper-azido polymers [Cu-3(N-3)(6)(tmen)(2)](n)(1)and [Cu-6(N-3)(12)(deen)(2)](n) (2) [tmen = N,N,N, N-tetramethylethylenediamine and deen = N,N-diethylethylenediamine] have been synthesized by using lower molar equivalents of the chelating diamine ligands with Cu(NO3)(2)center dot 3H(2)O and an excess of NaN3. The single crystal X-ray structure shows that in the basic unit of the 1D complex 1, the three Cu-II ions are linked by double end-on azido bridges with Cu-N-EO-Cu angles on both sides of the magnetic exchange critical angle of 108 degrees. Complex 2 is a 3D framework of a basic u-6 cluster. Cryomagnetic susceptibility measurements over a wide range of temperature exhibit dominant ferromagnetic behavior in both the complexes. Density functional theory calculations (B3LYP functional) have been performed on the trinuclear unit to provide a qualitative theoretical interpretation of the overall ferromagnetic behavior shown by the complex 1.