964 resultados para Machine-tools
Resumo:
This paper presents the modeling and position-sensorless vector control of a dual-airgap axial flux permanent magnet (AFPM) machine optimized for use in flywheel energy storage system (FESS) applications. The proposed AFPM machine has two sets of three-phase stator windings but requires only a single power converter to control both the electromagnetic torque and the axial levitation force. The proper controllability of the latter is crucial as it can be utilized to minimize the vertical bearing stress to improve the efficiency of the FESS. The method for controlling both the speed and axial displacement of the machine is discussed. An inherent speed sensorless observer is also proposed for speed estimation. The proposed observer eliminates the rotary encoder, which in turn reduces the overall weight and cost of the system while improving its reliability. The effectiveness of the proposed control scheme has been verified by simulations and experiments on a prototype machine.
Resumo:
"This work forms part of a much larger collaborative album project in progress between Tim Bruniges, Julian Knowles and David Trumpmanis which explores the intersections between traditional rock instrumentation and analogue and digital media. All of the creative team are performers, composers and producers. The material for the album was thus generated by a series of in studio improvisations and performances with each collaborator assuming a range of different and alternating roles – guitars, electronics, drums, percussion, bass, keyboards production. Thematically the work explores the intersection of instrumental (post) rock, ambient music, and historical electro-acoustic tape composition traditions. Over the past 10 years, musical practice has become increasingly hybrid, with the traditional boundaries between genre becoming progressively eroded. At the same time, digital tools have replaced many of the major analogue technologies that dominated music production and performance in the 20th century. The disappearance of analogue media in mainstream musical practice has had a profound effect on the sonic characteristics of contemporary music and the gestural basis for its production. Despite the increasing power of digital technologies, a small but dedicated group of practitioners has continued to prize and use analogue technology for its unique sounds and the non-linearity of the media, aestheticising its inherent limitations and flaws. At the most radical end of this spectrum lie glitch and lo-fi musical forms, seen in part as reactions to the clinical nature of digital media and the perceived lack of character associated with its transparency. Such developments have also problematised the traditional relationships between media and genre, where specific techniques and their associated sounds have become genre markers. Tristate is an investigation into this emerging set of dialogues between analogue and digital media across composition, production and performance. It employs analogue tape loops in performance, where a tape machine ‘performer’ records and hand manipulates loops of an electric guitar performer on ‘destroyed’ tape stock (intentionally damaged tape), processing the output of this analogue system in the digital domain with contemporary sound processors. In doing so it investigates how the most extreme sonic signatures of analogue media – tape dropout and noise – can be employed alongside contemporary digital sound gestures in both compositional and performance contexts and how the extremes of the two media signatures can brought together both compositionally and performatively. In respect of genre, the work established strategies for merging compositional techniques from the early musique concrete tradition of the 1940s with late 60s popular music experimentalism and the laptop glitch electronica movement of the early 2000s. Lastly, the work explores how analogue recording studio technologies can be used as performance tools, thus illuminating and foregrounding the performative/gestural dimensions of traditional analogue studio tools in use."
Resumo:
Brain decoding of functional Magnetic Resonance Imaging data is a pattern analysis task that links brain activity patterns to the experimental conditions. Classifiers predict the neural states from the spatial and temporal pattern of brain activity extracted from multiple voxels in the functional images in a certain period of time. The prediction results offer insight into the nature of neural representations and cognitive mechanisms and the classification accuracy determines our confidence in understanding the relationship between brain activity and stimuli. In this paper, we compared the efficacy of three machine learning algorithms: neural network, support vector machines, and conditional random field to decode the visual stimuli or neural cognitive states from functional Magnetic Resonance data. Leave-one-out cross validation was performed to quantify the generalization accuracy of each algorithm on unseen data. The results indicated support vector machine and conditional random field have comparable performance and the potential of the latter is worthy of further investigation.
Resumo:
Due to extension of using CCTVs and the other video security systems in all areas, these sorts of devices have been introduced as the most important digital evidences to search and seizure crimes. Video forensics tools are developed as a part of digital forensics tools to analyze digital evidences and clear vague points of them for presenting in the courts Existing video forensics tools have been facilitated the investigation process by providing different features based on various video editing techniques. In this paper, some of the most popular video forensics tools are discussed and the strengths and shortages of them are compared and consequently, an alternative framework which includes the strengths of existing popular tools is introduced.
Resumo:
Organisations have recently looked to design to become more customer oriented and co-create a new kind of value and service offering. This requires changes in the organisation mindset, involving the entire company, innovation processes and often its business model. One tool that has been successful in facilitating this has been Osterwalder and Pigneur (2010) ‘Business Model Canvas’ and more importantly the design process that supports the use of this tool. The aim of this paper is to explore the role design tools play in the translation and facilitation process of innovation in firms. Six ‘Design Innovation Catalysts’ (Wrigley, 2013) were interviewed in regards to their approach and use of design tools in order to better facilitate innovation. Results highlight the value of tools expands beyond their intended use to include; facilitation of communicating, permission to think creatively, and learning and teaching through visualisation. Findings from this research build upon the role of the Design Innovation Catalyst and provide additional implications for organisations.
Resumo:
This case study applied Weick's (1979) notion of sensemaking to support timely quality doctoral completion. Taking a socio-cultural perspective the paper explored how drivers can be applied to inform better fit (Durham, 1991). Global research themes, including growth in student numbers, timely completion and generation and distribution of research outcomes, are considered. It is argued that accessible and interactive web interfaces should be informed by quality assurance measures and key performance indicators. The contribution made is a better understanding of how phenomena and contexts can be applied to generate quality management of research training environments and research outcomes in universities.
Resumo:
Interaction topologies in service-oriented systems are usually classified into two styles: choreographies and orchestrations. In a choreography, services interact in a peer-to-peer manner and no service plays a privileged role. In contrast, interactions in an orchestration occur between one particular service, the orchestrator, and a number of subordinated services. Each of these topologies has its trade-offs. This paper considers the problem of migrating a service-oriented system from a choreography style to an orchestration style. Specifically, the paper presents a tool chain for synthesising orchestrators from choreographies. Choreographies are initially represented as communicating state machines. Based on this representation, an algorithm is presented that synthesises the behaviour of an orchestrator, which is also represented as a state machine. Concurrent regions are then identified in the synthesised state machine to obtain a more compact representation in the form of a Petri net. Finally, it is shown how the resulting Petri nets can be transformed into notations supported by commercial tools, such as the Business Process Modelling Notation (BPMN).
Resumo:
S. japonicum infection is believed to be endemic in 28 of the 80 provinces of the Philippines and the most recent data on schistosomiasis prevalence have shown considerable variability between provinces. In order to increase the efficient allocation of parasitic disease control resources in the country, we aimed to describe the small scale spatial variation in S. japonicum prevalence across the Philippines, quantify the role of the physical environment in driving the spatial variation of S. japonicum, and develop a predictive risk map of S. japonicum infection. Data on S. japonicum infection from 35,754 individuals across the country were geo-located at the barangay level and included in the analysis. The analysis was then stratified geographically for Luzon, the Visayas and Mindanao. Zero-inflated binomial Bayesian geostatistical models of S. japonicum prevalence were developed and diagnostic uncertainty was incorporated. Results of the analysis show that in the three regions, males and individuals aged ≥ 20 years had significantly higher prevalence of S. japonicum compared with females and children <5 years. The role of the environmental variables differed between regions of the Philippines. S. japonicum infection was widespread in the Visayas whereas it was much more focal in Luzon and Mindanao. This analysis revealed significant spatial variation in prevalence of S. japonicum infection in the Philippines. This suggests that a spatially targeted approach to schistosomiasis interventions, including mass drug administration, is warranted. When financially possible, additional schistosomiasis surveys should be prioritized to areas identified to be at high risk, but which were underrepresented in our dataset.
Resumo:
Background Designing novel proteins with site-directed recombination has enormous prospects. By locating effective recombination sites for swapping sequence parts, the probability that hybrid sequences have the desired properties is increased dramatically. The prohibitive requirements for applying current tools led us to investigate machine learning to assist in finding useful recombination sites from amino acid sequence alone. Results We present STAR, Site Targeted Amino acid Recombination predictor, which produces a score indicating the structural disruption caused by recombination, for each position in an amino acid sequence. Example predictions contrasted with those of alternative tools, illustrate STAR'S utility to assist in determining useful recombination sites. Overall, the correlation coefficient between the output of the experimentally validated protein design algorithm SCHEMA and the prediction of STAR is very high (0.89). Conclusion STAR allows the user to explore useful recombination sites in amino acid sequences with unknown structure and unknown evolutionary origin. The predictor service is available from http://pprowler.itee.uq.edu.au/star.
Resumo:
Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. HRV analysis is an important tool to observe the heart’s ability to respond to normal regulatory impulses that affect its rhythm. Like many bio-signals, HRV signals are non-linear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of non-linear systems and provides good noise immunity. A computer-based arrhythmia detection system of cardiac states is very useful in diagnostics and disease management. In this work, we studied the identification of the HRV signals using features derived from HOS. These features were fed to the support vector machine (SVM) for classification. Our proposed system can classify the normal and other four classes of arrhythmia with an average accuracy of more than 85%.
Resumo:
Problem addressed Wrist-worn accelerometers are associated with greater compliance. However, validated algorithms for predicting activity type from wrist-worn accelerometer data are lacking. This study compared the activity recognition rates of an activity classifier trained on acceleration signal collected on the wrist and hip. Methodology 52 children and adolescents (mean age 13.7 +/- 3.1 year) completed 12 activity trials that were categorized into 7 activity classes: lying down, sitting, standing, walking, running, basketball, and dancing. During each trial, participants wore an ActiGraph GT3X+ tri-axial accelerometer on the right hip and the non-dominant wrist. Features were extracted from 10-s windows and inputted into a regularized logistic regression model using R (Glmnet + L1). Results Classification accuracy for the hip and wrist was 91.0% +/- 3.1% and 88.4% +/- 3.0%, respectively. The hip model exhibited excellent classification accuracy for sitting (91.3%), standing (95.8%), walking (95.8%), and running (96.8%); acceptable classification accuracy for lying down (88.3%) and basketball (81.9%); and modest accuracy for dance (64.1%). The wrist model exhibited excellent classification accuracy for sitting (93.0%), standing (91.7%), and walking (95.8%); acceptable classification accuracy for basketball (86.0%); and modest accuracy for running (78.8%), lying down (74.6%) and dance (69.4%). Potential Impact Both the hip and wrist algorithms achieved acceptable classification accuracy, allowing researchers to use either placement for activity recognition.
Resumo:
Objectives Recent research has shown that machine learning techniques can accurately predict activity classes from accelerometer data in adolescents and adults. The purpose of this study is to develop and test machine learning models for predicting activity type in preschool-aged children. Design Participants completed 12 standardised activity trials (TV, reading, tablet game, quiet play, art, treasure hunt, cleaning up, active game, obstacle course, bicycle riding) over two laboratory visits. Methods Eleven children aged 3–6 years (mean age = 4.8 ± 0.87; 55% girls) completed the activity trials while wearing an ActiGraph GT3X+ accelerometer on the right hip. Activities were categorised into five activity classes: sedentary activities, light activities, moderate to vigorous activities, walking, and running. A standard feed-forward Artificial Neural Network and a Deep Learning Ensemble Network were trained on features in the accelerometer data used in previous investigations (10th, 25th, 50th, 75th and 90th percentiles and the lag-one autocorrelation). Results Overall recognition accuracy for the standard feed forward Artificial Neural Network was 69.7%. Recognition accuracy for sedentary activities, light activities and games, moderate-to-vigorous activities, walking, and running was 82%, 79%, 64%, 36% and 46%, respectively. In comparison, overall recognition accuracy for the Deep Learning Ensemble Network was 82.6%. For sedentary activities, light activities and games, moderate-to-vigorous activities, walking, and running recognition accuracy was 84%, 91%, 79%, 73% and 73%, respectively. Conclusions Ensemble machine learning approaches such as Deep Learning Ensemble Network can accurately predict activity type from accelerometer data in preschool children.
Resumo:
Automated remote ultrasound detectors allow large amounts of data on bat presence and activity to be collected. Processing of such data involves identifying bat species from their echolocation calls. Automated species identification has the potential to provide more consistent, predictable, and potentially higher levels of accuracy than identification by humans. In contrast, identification by humans permits flexibility and intelligence in identification, as well as the incorporation of features and patterns that may be difficult to quantify. We compared humans with artificial neural networks (ANNs) in their ability to classify short recordings of bat echolocation calls of variable signal to noise ratios; these sequences are typical of those obtained from remote automated recording systems that are often used in large-scale ecological studies. We presented 45 recordings (1–4 calls) produced by known species of bats to ANNs and to 26 human participants with 1 month to 23 years of experience in acoustic identification of bats. Humans correctly classified 86% of recordings to genus and 56% to species; ANNs correctly identified 92% and 62%, respectively. There was no significant difference between the performance of ANNs and that of humans, but ANNs performed better than about 75% of humans. There was little relationship between the experience of the human participants and their classification rate. However, humans with <1 year of experience performed worse than others. Currently, identification of bat echolocation calls by humans is suitable for ecological research, after careful consideration of biases. However, improvements to ANNs and the data that they are trained on may in future increase their performance to beyond those demonstrated by humans.