804 resultados para Machine Learning Techniques


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nos últimos anos, o fácil acesso em termos de custos, ferramentas de produção, edição e distribuição de conteúdos audiovisuais, contribuíram para o aumento exponencial da produção diária deste tipo de conteúdos. Neste paradigma de superabundância de conteúdos multimédia existe uma grande percentagem de sequências de vídeo que contém material explícito, sendo necessário existir um controlo mais rigoroso, de modo a não ser facilmente acessível a menores. O conceito de conteúdo explícito pode ser caraterizado de diferentes formas, tendo o trabalho descrito neste documento incidido sobre a deteção automática de nudez feminina presente em sequências de vídeo. Este processo de deteção e classificação automática de material para adultos pode constituir uma ferramenta importante na gestão de um canal de televisão. Diariamente podem ser recebidas centenas de horas de material sendo impraticável a implementação de um processo manual de controlo de qualidade. A solução criada no contexto desta dissertação foi estudada e desenvolvida em torno de um produto especifico ligado à área do broadcasting. Este produto é o mxfSPEEDRAIL F1000, sendo este uma solução da empresa MOG Technologies. O objetivo principal do projeto é o desenvolvimento de uma biblioteca em C++, acessível durante o processo de ingest, que permita, através de uma análise baseada em funcionalidades de visão computacional, detetar e sinalizar na metadata do sinal, quais as frames que potencialmente apresentam conteúdo explícito. A solução desenvolvida utiliza um conjunto de técnicas do estado da arte adaptadas ao problema a tratar. Nestas incluem-se algoritmos para realizar a segmentação de pele e deteção de objetos em imagens. Por fim é efetuada uma análise critica à solução desenvolvida no âmbito desta dissertação de modo a que em futuros desenvolvimentos esta seja melhorada a nível do consumo de recursos durante a análise e a nível da sua taxa de sucesso.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

High-content analysis has revolutionized cancer drug discovery by identifying substances that alter the phenotype of a cell, which prevents tumor growth and metastasis. The high-resolution biofluorescence images from assays allow precise quantitative measures enabling the distinction of small molecules of a host cell from a tumor. In this work, we are particularly interested in the application of deep neural networks (DNNs), a cutting-edge machine learning method, to the classification of compounds in chemical mechanisms of action (MOAs). Compound classification has been performed using image-based profiling methods sometimes combined with feature reduction methods such as principal component analysis or factor analysis. In this article, we map the input features of each cell to a particular MOA class without using any treatment-level profiles or feature reduction methods. To the best of our knowledge, this is the first application of DNN in this domain, leveraging single-cell information. Furthermore, we use deep transfer learning (DTL) to alleviate the intensive and computational demanding effort of searching the huge parameter's space of a DNN. Results show that using this approach, we obtain a 30% speedup and a 2% accuracy improvement.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A personalização é um aspeto chave de uma interação homem-computador efetiva. Numa era em que existe uma abundância de informação e tantas pessoas a interagir com ela, de muitas maneiras, a capacidade de se ajustar aos seus utilizadores é crucial para qualquer sistema moderno. A criação de sistemas adaptáveis é um domínio bastante complexo que necessita de métodos muito específicos para ter sucesso. No entanto, nos dias de hoje ainda não existe um modelo ou arquitetura padrão para usar nos sistemas adaptativos modernos. A principal motivação desta tese é a proposta de uma arquitetura para modelação do utilizador que seja capaz de incorporar diferentes módulos necessários para criar um sistema com inteligência escalável com técnicas de modelação. Os módulos cooperam de forma a analisar os utilizadores e caracterizar o seu comportamento, usando essa informação para fornecer uma experiência de sistema customizada que irá aumentar não só a usabilidade do sistema mas também a produtividade e conhecimento do utilizador. A arquitetura proposta é constituída por três componentes: uma unidade de informação do utilizador, uma estrutura matemática capaz de classificar os utilizadores e a técnica a usar quando se adapta o conteúdo. A unidade de informação do utilizador é responsável por conhecer os vários tipos de indivíduos que podem usar o sistema, por capturar cada detalhe de interações relevantes entre si e os seus utilizadores e também contém a base de dados que guarda essa informação. A estrutura matemática é o classificador de utilizadores, e tem como tarefa a sua análise e classificação num de três perfis: iniciado, intermédio ou avançado. Tanto as redes de Bayes como as neuronais são utilizadas, e uma explicação de como as preparar e treinar para lidar com a informação do utilizador é apresentada. Com o perfil do utilizador definido torna-se necessária uma técnica para adaptar o conteúdo do sistema. Nesta proposta, uma abordagem de iniciativa mista é apresentada tendo como base a liberdade de tanto o utilizador como o sistema controlarem a comunicação entre si. A arquitetura proposta foi desenvolvida como parte integrante do projeto ADSyS - um sistema de escalonamento dinâmico - utilizado para resolver problemas de escalonamento sujeitos a eventos dinâmicos. Possui uma complexidade elevada mesmo para utilizadores frequentes, daí a necessidade de adaptar o seu conteúdo de forma a aumentar a sua usabilidade. Com o objetivo de avaliar as contribuições deste trabalho, um estudo computacional acerca do reconhecimento dos utilizadores foi desenvolvido, tendo por base duas sessões de avaliação de usabilidade com grupos de utilizadores distintos. Foi possível concluir acerca dos benefícios na utilização de técnicas de modelação do utilizador com a arquitetura proposta.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Benefits of long-term monitoring have drawn considerable attention in healthcare. Since the acquired data provides an important source of information to clinicians and researchers, the choice for long-term monitoring studies has become frequent. However, long-term monitoring can result in massive datasets, which makes the analysis of the acquired biosignals a challenge. In this case, visualization, which is a key point in signal analysis, presents several limitations and the annotations handling in which some machine learning algorithms depend on, turn out to be a complex task. In order to overcome these problems a novel web-based application for biosignals visualization and annotation in a fast and user friendly way was developed. This was possible through the study and implementation of a visualization model. The main process of this model, the visualization process, comprised the constitution of the domain problem, the abstraction design, the development of a multilevel visualization and the study and choice of the visualization techniques that better communicate the information carried by the data. In a second process, the visual encoding variables were the study target. Finally, the improved interaction exploration techniques were implemented where the annotation handling stands out. Three case studies are presented and discussed and a usability study supports the reliability of the implemented work.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Human Activity Recognition systems require objective and reliable methods that can be used in the daily routine and must offer consistent results according with the performed activities. These systems are under development and offer objective and personalized support for several applications such as the healthcare area. This thesis aims to create a framework for human activities recognition based on accelerometry signals. Some new features and techniques inspired in the audio recognition methodology are introduced in this work, namely Log Scale Power Bandwidth and the Markov Models application. The Forward Feature Selection was adopted as the feature selection algorithm in order to improve the clustering performances and limit the computational demands. This method selects the most suitable set of features for activities recognition in accelerometry from a 423th dimensional feature vector. Several Machine Learning algorithms were applied to the used accelerometry databases – FCHA and PAMAP databases - and these showed promising results in activities recognition. The developed algorithm set constitutes a mighty contribution for the development of reliable evaluation methods of movement disorders for diagnosis and treatment applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Botnets are a group of computers infected with a specific sub-set of a malware family and controlled by one individual, called botmaster. This kind of networks are used not only, but also for virtual extorsion, spam campaigns and identity theft. They implement different types of evasion techniques that make it harder for one to group and detect botnet traffic. This thesis introduces one methodology, called CONDENSER, that outputs clusters through a self-organizing map and that identify domain names generated by an unknown pseudo-random seed that is known by the botnet herder(s). Aditionally DNS Crawler is proposed, this system saves historic DNS data for fast-flux and double fastflux detection, and is used to identify live C&Cs IPs used by real botnets. A program, called CHEWER, was developed to automate the calculation of the SVM parameters and features that better perform against the available domain names associated with DGAs. CONDENSER and DNS Crawler were developed with scalability in mind so the detection of fast-flux and double fast-flux networks become faster. We used a SVM for the DGA classififer, selecting a total of 11 attributes and achieving a Precision of 77,9% and a F-Measure of 83,2%. The feature selection method identified the 3 most significant attributes of the total set of attributes. For clustering, a Self-Organizing Map was used on a total of 81 attributes. The conclusions of this thesis were accepted in Botconf through a submited article. Botconf is known conferênce for research, mitigation and discovery of botnets tailled for the industry, where is presented current work and research. This conference is known for having security and anti-virus companies, law enforcement agencies and researchers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This dissertation presents a solution for environment sensing using sensor fusion techniques and a context/environment classification of the surroundings in a service robot, so it could change his behavior according to the different rea-soning outputs. As an example, if a robot knows he is outdoors, in a field environment, there can be a sandy ground, in which it should slow down. Contrariwise in indoor environments, that situation is statistically unlikely to happen (sandy ground). This simple assumption denotes the importance of context-aware in automated guided vehicles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hand gestures are a powerful way for human communication, with lots of potential applications in the area of human computer interaction. Vision-based hand gesture recognition techniques have many proven advantages compared with traditional devices, giving users a simpler and more natural way to communicate with electronic devices. This work proposes a generic system architecture based in computer vision and machine learning, able to be used with any interface for human-computer interaction. The proposed solution is mainly composed of three modules: a pre-processing and hand segmentation module, a static gesture interface module and a dynamic gesture interface module. The experiments showed that the core of visionbased interaction systems could be the same for all applications and thus facilitate the implementation. For hand posture recognition, a SVM (Support Vector Machine) model was trained and used, able to achieve a final accuracy of 99.4%. For dynamic gestures, an HMM (Hidden Markov Model) model was trained for each gesture that the system could recognize with a final average accuracy of 93.7%. The proposed solution as the advantage of being generic enough with the trained models able to work in real-time, allowing its application in a wide range of human-machine applications. To validate the proposed framework two applications were implemented. The first one is a real-time system able to interpret the Portuguese Sign Language. The second one is an online system able to help a robotic soccer game referee judge a game in real time.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hand gestures are a powerful way for human communication, with lots of potential applications in the area of human computer interaction. Vision-based hand gesture recognition techniques have many proven advantages compared with traditional devices, giving users a simpler and more natural way to communicate with electronic devices. This work proposes a generic system architecture based in computer vision and machine learning, able to be used with any interface for humancomputer interaction. The proposed solution is mainly composed of three modules: a pre-processing and hand segmentation module, a static gesture interface module and a dynamic gesture interface module. The experiments showed that the core of vision-based interaction systems can be the same for all applications and thus facilitate the implementation. In order to test the proposed solutions, three prototypes were implemented. For hand posture recognition, a SVM model was trained and used, able to achieve a final accuracy of 99.4%. For dynamic gestures, an HMM model was trained for each gesture that the system could recognize with a final average accuracy of 93.7%. The proposed solution as the advantage of being generic enough with the trained models able to work in real-time, allowing its application in a wide range of human-machine applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The MAP-i Doctoral Programme in Informatics, of the Universities of Minho, Aveiro and Porto

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recently, there has been a growing interest in the field of metabolomics, materialized by a remarkable growth in experimental techniques, available data and related biological applications. Indeed, techniques as Nuclear Magnetic Resonance, Gas or Liquid Chromatography, Mass Spectrometry, Infrared and UV-visible spectroscopies have provided extensive datasets that can help in tasks as biological and biomedical discovery, biotechnology and drug development. However, as it happens with other omics data, the analysis of metabolomics datasets provides multiple challenges, both in terms of methodologies and in the development of appropriate computational tools. Indeed, from the available software tools, none addresses the multiplicity of existing techniques and data analysis tasks. In this work, we make available a novel R package, named specmine, which provides a set of methods for metabolomics data analysis, including data loading in different formats, pre-processing, metabolite identification, univariate and multivariate data analysis, machine learning, and feature selection. Importantly, the implemented methods provide adequate support for the analysis of data from diverse experimental techniques, integrating a large set of functions from several R packages in a powerful, yet simple to use environment. The package, already available in CRAN, is accompanied by a web site where users can deposit datasets, scripts and analysis reports to be shared with the community, promoting the efficient sharing of metabolomics data analysis pipelines.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Machine learning, inductive logic programming, search

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The automatic diagnostic discrimination is an application of artificial intelligence techniques that can solve clinical cases based on imaging. Diffuse liver diseases are diseases of wide prominence in the population and insidious course, yet early in its progression. Early and effective diagnosis is necessary because many of these diseases progress to cirrhosis and liver cancer. The usual technique of choice for accurate diagnosis is liver biopsy, an invasive and not without incompatibilities one. It is proposed in this project an alternative non-invasive and free of contraindications method based on liver ultrasonography. The images are digitized and then analyzed using statistical techniques and analysis of texture. The results are validated from the pathology report. Finally, we apply artificial intelligence techniques as Fuzzy k-Means or Support Vector Machines and compare its significance to the analysis Statistics and the report of the clinician. The results show that this technique is significantly valid and a promising alternative as a noninvasive diagnostic chronic liver disease from diffuse involvement. Artificial Intelligence classifying techniques significantly improve the diagnosing discrimination compared to other statistics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Reinforcement learning (RL) is a very suitable technique for robot learning, as it can learn in unknown environments and in real-time computation. The main difficulties in adapting classic RL algorithms to robotic systems are the generalization problem and the correct observation of the Markovian state. This paper attempts to solve the generalization problem by proposing the semi-online neural-Q_learning algorithm (SONQL). The algorithm uses the classic Q_learning technique with two modifications. First, a neural network (NN) approximates the Q_function allowing the use of continuous states and actions. Second, a database of the most representative learning samples accelerates and stabilizes the convergence. The term semi-online is referred to the fact that the algorithm uses the current but also past learning samples. However, the algorithm is able to learn in real-time while the robot is interacting with the environment. The paper shows simulated results with the "mountain-car" benchmark and, also, real results with an underwater robot in a target following behavior