911 resultados para Machine Learning,Natural Language Processing,Descriptive Text Mining,POIROT,Transformer
Resumo:
In the last few years, there has been a wide development in the research on textual information systems. The goal is to improve these systems in order to allow an easy localization, treatment and access to the information stored in digital format (Digital Databases, Documental Databases, and so on). There are lots of applications focused on information access (for example, Web-search systems like Google or Altavista). However, these applications have problems when they must access to cross-language information, or when they need to show information in a language different from the one of the query. This paper explores the use of syntactic-sematic patterns as a method to access to multilingual information, and revise, in the case of Information Retrieval, where it is possible and useful to employ patterns when it comes to the multilingual and interactive aspects. On the one hand, the multilingual aspects that are going to be studied are the ones related to the access to documents in different languages from the one of the query, as well as the automatic translation of the document, i.e. a machine translation system based on patterns. On the other hand, this paper is going to go deep into the interactive aspects related to the reformulation of a query based on the syntactic-semantic pattern of the request.
Resumo:
In this paper, a proposal of a multi-modal dialogue system oriented to multilingual question-answering is presented. This system includes the following ways of access: voice, text, avatar, gestures and signs language. The proposal is oriented to the question-answering task as a user interaction mechanism. The proposal here presented is in the first stages of its development phase and the architecture is presented for the first time on the base of the experiences in question-answering and dialogues previously developed. The main objective of this research work is the development of a solid platform that will permit the modular integration of the proposed architecture.
Resumo:
Recent years have witnessed a surge of interest in computational methods for affect, ranging from opinion mining, to subjectivity detection, to sentiment and emotion analysis. This article presents a brief overview of the latest trends in the field and describes the manner in which the articles contained in the special issue contribute to the advancement of the area. Finally, we comment on the current challenges and envisaged developments of the subjectivity and sentiment analysis fields, as well as their application to other Natural Language Processing tasks and related domains.
Resumo:
El Trastorno de Espectro Autista (TEA) es un trastorno que impide el correcto desarrollo de funciones cognitivas, habilidades sociales y comunicativas en las personas. Un porcentaje significativo de personas con autismo presentan además dificultades en la comprensión lectora. El proyecto europeo FIRST está orientado a desarrollar una herramienta multilingüe llamada Open Book que utiliza Tecnologías del Lenguaje Humano para identificar obstáculos que dificultan la comprensión lectora de un documento. La herramienta ayuda a cuidadores y personas con autismo transformando documentos escritos a un formato más sencillo mediante la eliminación de dichos obstáculos identificados en el texto. En este artículo se presenta el proyecto FIRST así como la herramienta desarrollada Open Book.
Resumo:
Natural Language Interfaces to Query Databases (NLIDBs) have been an active research field since the 1960s. However, they have not been widely adopted. This article explores some of the biggest challenges and approaches for building NLIDBs and proposes techniques to reduce implementation and adoption costs. The article describes {AskMe*}, a new system that leverages some of these approaches and adds an innovative feature: query-authoring services, which lower the entry barrier for end users. Advantages of these approaches are proven with experimentation. Results confirm that, even when {AskMe*} is automatically reconfigurable against multiple domains, its accuracy is comparable to domain-specific NLIDBs.
Resumo:
Só está disponível o resumo.
Resumo:
We present a machine learning-based system for automatically computing interpretable, quantitative measures of animal behavior. Through our interactive system, users encode their intuition about behavior by annotating a small set of video frames. These manual labels are converted into classifiers that can automatically annotate behaviors in screen-scale data sets. Our general-purpose system can create a variety of accurate individual and social behavior classifiers for different organisms, including mice and adult and larval Drosophila.
Resumo:
Plates accompanied by guard sheets with descriptive letterpress.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
We present the results of applying automated machine learning techniques to the problem of matching different object catalogues in astrophysics. In this study, we take two partially matched catalogues where one of the two catalogues has a large positional uncertainty. The two catalogues we used here were taken from the H I Parkes All Sky Survey (HIPASS) and SuperCOSMOS optical survey. Previous work had matched 44 per cent (1887 objects) of HIPASS to the SuperCOSMOS catalogue. A supervised learning algorithm was then applied to construct a model of the matched portion of our catalogue. Validation of the model shows that we achieved a good classification performance (99.12 per cent correct). Applying this model to the unmatched portion of the catalogue found 1209 new matches. This increases the catalogue size from 1887 matched objects to 3096. The combination of these procedures yields a catalogue that is 72 per cent matched.