JAABA: interactive machine learning for automatic annotation of animal behavior


Autoria(s): Kabra, Mayank; Robie, Alice A; Rivera-Alba, Marta; Branson, Steven; Branson, Kristin
Data(s)

12/05/2016

12/05/2016

01/01/2013

Resumo

We present a machine learning-based system for automatically computing interpretable, quantitative measures of animal behavior. Through our interactive system, users encode their intuition about behavior by annotating a small set of video frames. These manual labels are converted into classifiers that can automatically annotate behaviors in screen-scale data sets. Our general-purpose system can create a variety of accurate individual and social behavior classifiers for different organisms, including mice and adult and larval Drosophila.

Identificador

Kabra, M., Robie, A. A., Rivera-Alba, M., Branson, S., Branson, K. (2013). JAABA: interactive machine learning for automatic annotation of animal behavior. Nat Meth, 10(1), 64–67.

http://hdl.handle.net/10400.7/601

10.1038/nmeth.2281

Idioma(s)

eng

Publicador

Nature Publishing Group

Relação

Não existe menção de financiadores nem de patrocionadores no documento.

http://www.nature.com/nmeth/journal/v10/n1/full/nmeth.2281.html

Direitos

openAccess

Palavras-Chave #Behavioural methods #Experimental organisms #Machine learning
Tipo

article