JAABA: interactive machine learning for automatic annotation of animal behavior
Data(s) |
12/05/2016
12/05/2016
01/01/2013
|
---|---|
Resumo |
We present a machine learning-based system for automatically computing interpretable, quantitative measures of animal behavior. Through our interactive system, users encode their intuition about behavior by annotating a small set of video frames. These manual labels are converted into classifiers that can automatically annotate behaviors in screen-scale data sets. Our general-purpose system can create a variety of accurate individual and social behavior classifiers for different organisms, including mice and adult and larval Drosophila. |
Identificador |
Kabra, M., Robie, A. A., Rivera-Alba, M., Branson, S., Branson, K. (2013). JAABA: interactive machine learning for automatic annotation of animal behavior. Nat Meth, 10(1), 64–67. http://hdl.handle.net/10400.7/601 10.1038/nmeth.2281 |
Idioma(s) |
eng |
Publicador |
Nature Publishing Group |
Relação |
Não existe menção de financiadores nem de patrocionadores no documento. http://www.nature.com/nmeth/journal/v10/n1/full/nmeth.2281.html |
Direitos |
openAccess |
Palavras-Chave | #Behavioural methods #Experimental organisms #Machine learning |
Tipo |
article |