999 resultados para MODIFIED POLYCARBONATE
Resumo:
A compact two-step modified-signed-digit arithmetic-logic array processor is proposed. When the reference digits are programmed, both addition and subtraction can be performed by the same binary logic operations regardless of the sign of the input digits. The optical implementation and experimental demonstration with an electron-trapping device are shown. Each digit is encoded by a single pixel, and no polarization is included. Any combinational logic can be easily performed without optoelectronic and electro-optic conversions of the intermediate results. The system is compact, general purpose, simple to align, and has a high signal-to-noise ratio. (C) 1999 Optical Society of America.
Resumo:
A novel, to our knowledge, two-step digit-set-restricted modified signed-digit (MSD) addition-subtraction algorithm is proposed. With the introduction of the reference digits, the operand words are mapped into an intermediate carry word with all digits restricted to the set {(1) over bar, 0} and an intermediate sum word with all digits restricted to the set {0, 1}, which can be summed to form the final result without carry generation. The operation can be performed in parallel by use of binary logic. An optical system that utilizes an electron-trapping device is suggested for accomplishing the required binary logic operations. By programming of the illumination of data arrays, any complex logic operations of multiple variables can be realized without additional temporal latency of the intermediate results. This technique has a high space-bandwidth product and signal-to-noise ratio. The main structure can be stacked to construct a compact optoelectronic MSD adder-subtracter. (C) 1999 Optical Society of America.
Resumo:
Based on the two-step modified signed-digit (MSD) algorithm, we present a one-step algorithm for the parallel addition and subtraction of two MSD numbers. This algorithm is reached by classifying the three neighboring digit pairs into 10 groups and then making a decision on the groups. It has only a look-up truth table, and can be further formulated by eight computation rules. A joint spatial encoding technique is developed to represent both the input data and the computation rules. Furthermore, an optical correlation architecture is suggested to implement the MSD adder in parallel. An experimental demonstration is also given. (C) 1996 Society of Photo-Optical instrumentation Engineers.
Resumo:
A novel optoelectronic quotient-selected modified signed-digit division technique is proposed. This division method generates one quotient digit per iteration involving only one shift operation, one quotient selection operation and one addition/subtraction operation. The quotient digit can be selected by observing three most significant digits of the partial remainder independent of the divisor. Two algorithms based on truth-table look-up and binary logic operations are derived. For optoelectronic implementation, an efficient shared content-addressable memory based architecture as well as compact logic array processor based architecture with an electron-trapping device is proposed. Performance evaluation of the proposed optoelectronic quotient-selected division shows that it is faster than the previously reported convergence division approach. Finally, proof-of-principle experimental results are presented to verify the effectiveness of the proposed technique. (C) 2001 Society of Photo-Optical Instrumentation Engineers.
Resumo:
An efficient one-step digit-set-restricted modified signed-digit (MSD) adder based on symbolic substitution is presented. In this technique, carry propagation is avoided by introducing reference digits to restrict the intermediate carry and sum digits to {1,0} and {0,1}, respectively. The proposed technique requires significantly fewer minterms and simplifies system complexity compared to the reported one-step MSD addition techniques. An incoherent correlator based on an optoelectronic shared content-addressable memory processor is suggested to perform the addition operation. In this technique, only one set of minterms needs to be stored, independent of the operand length. (C) 2002 society or Photo-Optical Instrumentation Engineers.
Resumo:
The kinetics of the reduction of O2 by Ru(NH3)6+2 as catalyzed by cobalt(II) tetrakis(4-N-methylpyridyl)porphyrin are described both in homogeneous solution and when the reactants are confined to Nafion coatings on graphite electrodes. The catalytic mechanism is determined and the factors that can control the total reduction currents at Nafion-coated electrodes are specified. A kinetic zone diagram for analyzing the behavior of catalyst-mediator-substrate systems at polymer coated electrodes is presented and utilized in identifying the current-limiting processes. Good agreement is demonstrated between calculated and measured reduction currents at rotating disk electrodes. The experimental conditions that will yield the optimum performance of coated electrodes are discussed, and a relationship is derived for the optimal coating thickness.
The relation between the reduction potentials of adsorbed and unadsorbed cobalt(III) tetrakis(4-N-methylpyridyl)porphyrin and those where it catalyzes the electroreduction of dioxygen is described. There is an unusually large change in the formal potential of the Co(III) couple upon the adsorption of the porphyrin on the graphite electrode surface. The mechanism in which the (inevitably) adsorbed porphyrin catalyzes the reduction of O2 is in accord with a general mechanistic scheme proposed for most monomeric cobalt porphyrins.
Four new dimeric metalloporphyrins (prepared in the laboratory of Professor C. K. Chang) have the two porphyrin rings linked by an anthracene bridge attached to meso positions. The electrocatalytic behavior of the diporphyrins towards the reduction of O2 at graphite electrodes has been examined for the following combination of metal centers: Co-Cu, Co-Fe, Fe-Fe, Fe-H2. The Co-Cu diporphyrin catalyzes the reduction of O2 to H2O2 but no further. The other three catalysts all exhibit mixed reduction pathways leading to both H2O2 and H2O. However, the pathways that lead to H2O do not involve H2O2 as an intermediate. A possible mechanistic scheme is offered to account for the observed behavior.
Resumo:
A two-step digit-set-restricted modified signed-digit (MSD) adder based on symbolic substitution is presented. In the proposed addition algorithm, carry propagation is avoided by using reference digits to restrict the intermediate MSD carry and sum digits into {(1) over bar ,0} and {0, 1}, respectively. The algorithm requires only 12 minterms to generate the final results, and no complementarity operations for nonzero outputs are involved, which simplifies the system complexity significantly. An optoelectronic shared content-addressable memory based on an incoherent correlator is used for experimental demonstration. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A two-step digit-set-restricted modified signed-digit (MSD) adder based on symbolic substitution is presented. In the proposed addition algorithm, carry propagation is avoided by using reference digits to restrict the intermediate MSD carry and sum digits into {(1) over bar ,0} and {0, 1}, respectively. The algorithm requires only 12 minterms to generate the final results, and no complementarity operations for nonzero outputs are involved, which simplifies the system complexity significantly. An optoelectronic shared content-addressable memory based on an incoherent correlator is used for experimental demonstration. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Porous SiO2 antireflective (AR) coatings are prepared from the colloidal silica solution modified with methyltriethoxysilane (MTES) based on the sol-gel route. The viscosity of modified silica suspensions changes but their stability keeps when MTES is introduced. The refractive indices of modified coatings vary little after bake treatment from 100 to 150 Celsius. The modified silica coatings on Ti:sapphire crystal, owning good homogeneity, display prominent antireflective effect within the laser output waveband (750-850 nm) of Ti:sapphire lasers, with average transmission above 98.6%, and own laser induced damage thresholds (LIDTs) of more than 2.2 J/cm2 at 800 nm with the pulse duration of 300 ps.
Resumo:
[EN] This paper reports an innovative technique for reagents storage in microfluidic devices by means of a one-step UV-photoprintable ionogel-based microarray on non-modified polymeric substrates. Although the ionogel and the ink-jet printing technology are well published, this is the first study where both are used for long-term reagent storage in lab-on-a-chip devices. This technology for reagent storage is perfectly compatible with mass production fabrication processes since pre-treatment of the device substrate is not necessary and inkjet printing allows for an efficient reagent deposition process. The functionality of this microarray is demonstrated by testing the release of biotin-647 after being stored for 1 month at room temperature. Analysis of the fluorescence of the ionogel-based microarray that contains biotin-647 demonstrated that 90% of the biotin-647 present was released from the ionogel-based microarray after pumping PBS 0.1% Tween at 37 °C. Moreover, the activity of biotin-647 after being released from the ionogel-based microarray was investigated trough the binding capability of this biotin to a microcontact printed chip surface with avidin. These findings pave the way for a novel, one-step, cheap and mass production on-chip reagents storage method applicable to other reagents such as antibodies and proteins and enzymes.