989 resultados para MASSES
Resumo:
We report on a search for the standard model Higgs boson produced in association with a $W$ or $Z$ boson in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV recorded by the CDF II experiment at the Tevatron in a data sample corresponding to an integrated luminosity of 2.1 fb$^{-1}$. We consider events which have no identified charged leptons, an imbalance in transverse momentum, and two or three jets where at least one jet is consistent with originating from the decay of a $b$ hadron. We find good agreement between data and predictions. We place 95% confidence level upper limits on the production cross section for several Higgs boson masses ranging from 110$\gevm$ to 150$\gevm$. For a mass of 115$\gevm$ the observed (expected) limit is 6.9 (5.6) times the standard model prediction.
Resumo:
We present a search for the lightest supersymmetric partner of the top quark in proton-antiproton collisions at a center-of-mass energy √s=1.96 TeV. This search was conducted within the framework of the R parity conserving minimal supersymmetric extension of the standard model, assuming the stop decays dominantly to a lepton, a sneutrino, and a bottom quark. We searched for events with two oppositely-charged leptons, at least one jet, and missing transverse energy in a data sample corresponding to an integrated luminosity of 1 fb-1 collected by the Collider Detector at Fermilab experiment. No significant evidence of a stop quark signal was found. Exclusion limits at 95% confidence level in the stop quark versus sneutrino mass plane are set. Stop quark masses up to 180 GeV/c2 are excluded for sneutrino masses around 45 GeV/c2, and sneutrino masses up to 116 GeV/c2 are excluded for stop quark masses around 150 GeV/c2.
Resumo:
A search for a narrow diphoton mass resonance is presented based on data from 3.0 fb^{-1} of integrated luminosity from p-bar p collisions at sqrt{s} = 1.96 TeV collected by the CDF experiment. No evidence of a resonance in the diphoton mass spectrum is observed, and upper limits are set on the cross section times branching fraction of the resonant state as a function of Higgs boson mass. The resulting limits exclude Higgs bosons with masses below 106 GeV at a 95% Bayesian credibility level (C.L.) for one fermiophobic benchmark model.
Resumo:
We present a measurement of the transverse momentum with respect to the jet axis ($k_{T}$) of particles in jets produced in $p\bar p$ collisions at $\sqrt{s}=1.96$ TeV. Results are obtained for charged particles within a cone of opening angle 0.5 radians around the jet axis in events with dijet invariant masses between 66 and 737 GeV/c$^{2}$. The experimental data are compared to theoretical predictions obtained for fragmentation partons within the framework of resummed perturbative QCD using the modified leading log and next-to-modified leading log approximations. The comparison shows that trends in data are successfully described by the theoretical predictions, indicating that the perturbative QCD stage of jet fragmentation is dominant in shaping basic jet characteristics.
Resumo:
We present a search for standard model Higgs boson production in association with a W boson in proton-antiproton collisions at a center of mass energy of 1.96 TeV. The search employs data collected with the CDF II detector that correspond to an integrated luminosity of approximately 1.9 inverse fb. We select events consistent with a signature of a single charged lepton, missing transverse energy, and two jets. Jets corresponding to bottom quarks are identified with a secondary vertex tagging method, a jet probability tagging method, and a neural network filter. We use kinematic information in an artificial neural network to improve discrimination between signal and background compared to previous analyses. The observed number of events and the neural network output distributions are consistent with the standard model background expectations, and we set 95% confidence level upper limits on the production cross section times branching fraction ranging from 1.2 to 1.1 pb or 7.5 to 102 times the standard model expectation for Higgs boson masses from 110 to $150 GeV/c^2, respectively.
Resumo:
We present the result of a search for a massive color-octet vector particle, (e.g. a massive gluon) decaying to a pair of top quarks in proton-antiproton collisions with a center-of-mass energy of 1.96 TeV. This search is based on 1.9 fb$^{-1}$ of data collected using the CDF detector during Run II of the Tevatron at Fermilab. We study $t\bar{t}$ events in the lepton+jets channel with at least one $b$-tagged jet. A massive gluon is characterized by its mass, decay width, and the strength of its coupling to quarks. These parameters are determined according to the observed invariant mass distribution of top quark pairs. We set limits on the massive gluon coupling strength for masses between 400 and 800 GeV$/c^2$ and width-to-mass ratios between 0.05 and 0.50. The coupling strength of the hypothetical massive gluon to quarks is consistent with zero within the explored parameter space.
Resumo:
Purpose: A number of proteome studies have been performed recently to identify pheromone-related protein expression and their molecular function using genetically modified rodents' urine. However, no such studies have used Indian commensal rodents; interestingly, in a previous investigation, we confirmed the presence of volatile molecules in commensal rodents urine and these molecules seem to be actively involved in pheromonal communication. Therefore, the present study aims to identify the major urinary protein [MUP] present in commensal rat urine, which will help us to understand the protein's expression pattern and intrinsic properties among the rodents globally. Experimental Design: Initially, the total urinary proteins were separated by 1-D and 2-D electrophoresis and then subsequently analyzed by Matrix Assisted Laser Desorption Ionization-Time of Flight and Mass Spectrometer (MALDI-TOF/MS). Furthermore, they were then fragmented with the aid of a Tandem Mass Spectrometer (TOF/TOF) and the identified sequences aligned and confirmed using similarity with the deduced primary structures of members of the lipocalin superfamily.Results: The SDS-PAGE protein profiles showed distinct proteins with molecular masses of 15, 22.4, 25, 28, 42, 50, 55, 68, and 91 kDa. Of these proteins, the 22.4 kDa protein was considered to be target candidate. When 2D electrophoresis was carried out, about similar to 50 spots were detected with different masses and various pI ranges. The 22.4 kDa protein was found to have a pI of about 4.9. This 22.4 kDa protein spot was digested and subjected to mass spectrometry; it was identified as rat MUP. The fragmented peptides from the rat MUP at 935, 1026, 1192, and 1303 m/z were further fragmented with the aid of MS/MS and generated de novo sequence and this confirmed this protein to be the MUP present in the urine of commensal rats.Conclusion: The present investigation confirms the presence of MUP with a molecular mass of 22.4 kDa in the urine of commensal rats. This protein may be involved in the binding of volatile molecules and opens up a discussion about how volatile and non-volatile molecules in the commensal rats' urine may contribute chemo-communication.
Resumo:
We discuss symmetries and scenarios leading to quasi-degenerate neutrinos in type I seesaw models. The existence of degeneracy in the present approach is not linked to any specific structure for the Dirac neutrino Yukawa coupling matrix y(D) and holds in general. Basic input is the application of the minimal flavour violation principle to the leptonic sector. Generalizing this principle, we assume that the structure of the right-handed neutrino mass matrix is determined by y(D) and the charged lepton Yukawa coupling matrix y(l) in an effective theory invariant under specific groups G(F) contained in the full symmetry group of the kinetic energy terms. G(F) invariance also leads to specific structure for the departure from degeneracy. The neutrino mass matrix (with degenerate mass m(0)) resulting after seesaw mechanism has a simple form Mv approximate to m(0)(I - py(l)y(l)(T)) in one particular scenario based on supersymmetry. This form is shown tolead to correct description of neutrino masses and mixing angles. The thermal leptogenesis after inclusion of flavour effects can account for the observed baryon asymmetry of the universe within the present scenario. Rates for lepton flavour violating processes can occur at observable levels in the supersymmetric version of the scenario. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
We study the energy current in a model of heat conduction, first considered in detail by Casher and Lebowitz. The model consists of a one-dimensional disordered harmonic chain of n i.i.d. random masses, connected to their nearest neighbors via identical springs, and coupled at the boundaries to Langevin heat baths, with respective temperatures T_1 and T_n. Let EJ_n be the steady-state energy current across the chain, averaged over the masses. We prove that EJ_n \sim (T_1 - T_n)n^{-3/2} in the limit n \to \infty, as has been conjectured by various authors over the time. The proof relies on a new explicit representation for the elements of the product of associated transfer matrices.
Resumo:
In this work, using self-consistent tight-binding calculations. for the first time, we show that a direct to indirect band gap transition is possible in an armchair graphene nanoribbon by the application of an external bias along the width of the ribbon, opening up the possibility of new device applications. With the help of the Dirac equation, we qualitatively explain this band gap transition using the asymmetry in the spatial distribution of the perturbation potential produced inside the nanoribbon by the external bias. This is followed by the verification of the band gap trends with a numerical technique using Magnus expansion of matrix exponentials. Finally, we show that the carrier effective masses possess tunable sharp characters in the vicinity of the band gap transition points.
Resumo:
A search for high-mass resonances in the $e^+e^-$ final state is presented based on 2.5 fb$^{-1}$ of $\sqrt{s}=$1.96 TeV $p\bar{p}$ collision data from the CDF II detector at the Fermilab Tevatron. The largest excess over the standard model prediction is at an $e^+e^-$ invariant mass of 240 GeV/$c^2$. The probability of observing such an excess arising from fluctuations in the standard model anywhere in the mass range of 150--1,000 GeV/$c^2$ is 0.6% (equivalent to 2.5 $\sigma$). We exclude the standard model coupling $Z'$ and the Randall-Sundrum graviton for $k/\overline{M}_{Pl}=0.1$ with masses below 963 and 848 GeV/$c^2$ at the 95% credibility level, respectively.
Resumo:
A literal Liapunov stability analysis of a spacecraft with flexible appendages often requires a division of the associated dynamic potential into as many dependent parts as the number of appendages. First part of this paper exposes the stringency in the stability criteria introduced by such a division and shows it to be removable by a “reunion policy.” The policy enjoins the analyst to piece together the sets of criteria for each part. Employing reunion the paper then compares four methods of the Liapunov stability analysis of hybrid dynamical systems illustrated by an inertially coupled, damped, gravity stabilized, elastic spacecraft with four gravity booms having tip masses and a damper rod, all skewed to the orbital plane. The four methods are the method of test density function, assumed modes, and two and one-integral coordinates. Superiority of one-integral coordinate approach is established here. The design plots demonstrate how elastic effects delimit the satellite boom length.
Resumo:
Viime aikoina ilmastonmuutos, fossiilisten polttoaineiden väheneminen ja niiden hinnan nousu ovat lisänneet merkittävästi maailmanlaajuista kiinnostusta uusiutuviin energiavaroihin. Suomessa uusiutuvien energialähteiden käytössä on jo pitkään panostettu metsäteollisuuden sivutuotevirtana tuottamaan puuperäiseen biomassaan, jota metsäteollisuus käyttää energiantuotantoonsa. Metsäteollisuuden jätevesien käsittelyssä syntyy erilaisia lietteitä, jotka joko uusiokäytetään tai hävitetään polttamalla tai sijoittamalla kaatopaikalle. Erityisesti biolietteiden uusiokäyttö on hankalaa ja kaatopaikkasijoitus tulevaisuudessa mahdotonta tai ainakin kustannuksiltaan kohtuutonta. Käytännössä liete hävitetään polttamalla ja kuivaamalla siitä tulee polttoaine. Lietteiden energiakäyttö on järkevin tapa hävittää jäteliete. Lietteiden korkean vesipitoisuuden vuoksi ne tulee kuitenkin kuivata ennen polttoa. Lietteen kuivaaminen sekundäärienergiavirralla eli metsäteollisuusprosesseissa sivutuotteena muodostuvalla ns. hukkalämmöllä lisää lietteen poltosta saatavaa energiamäärää ja korvaa fossiilisten polttoaineiden käyttöä. Tutkimuksen tavoitteena oli selvittää lietteen kuivaukseen optimaalisin kuoren ja lietteen seossuhde eri kuivausparametrejä vaihdellen. Kokeellinen työ aloitettiin rakentamalla energiatekniikan koehalliin laboratoriokokoluokan kiintopetikuivuri, jossa kuivumista tutkittiin puhaltamalla polttoainepedin läpi lämmitettyä ilmaa. Kuivattavina polttoaineina olivat kuoren ja lietteen seos tai pelkkä kuori ja liete erilaisilla massoilla ja erilaisilla prosenttisilla suhteilla ja erilaisissa lämpötiloissa. Kuivumiskäyrien määritys perustui massanmuutokseen. Koelaitteessa olivat anturit lämpötilan mittausta varten, jotta lämpötila saatiin säädettyä ja seurattua kokeen edellyttämällä tavalla. Lämpötilat ja painonmuutokset tallentuivat koetta tehdessä tietokoneelle. Kuivauskokeet osoittivat, että liete-kuori seos kuivuu hyvin kiintopedissä kun lietteen massaosuus seoksessa on korkeintaan 50 %. Lietteen massaosuuden ollessa tätä suurempi kuivaaminen ei enää ole tehokasta, mikä johtuu luultavasti ilman suuresta kanavoitumisesta kuivauspedissä. Kuorta kuivatessa lämpötilan nosto 50 °C:stä 70 °C:een oli huomattavasti tehokkaampaa kuin 70 °C:stä 90 °C:een, ajallisesti ero oli noin kaksinkertainen.
Resumo:
We present a simplified theoretical formulation of the thermoelectric power (TP) under magnetic quantization in quantum wells (QWs) of nonlinear optical materials on the basis of a newly formulated magneto-dispersion law. We consider the anisotropies in the effective electron masses and the spin-orbit constants within the framework of k.p formalism by incorporating the influence of the crystal field splitting. The corresponding results for III-V materials form a special case of our generalized analysis under certain limiting conditions. The TP in QWs of Bismuth, II-VI, IV-VI and stressed materials has been studied by formulating appropriate electron magneto-dispersion laws. We also address the fact that the TP exhibits composite oscillations with a varying quantizing magnetic field in QWs of n-Cd3As2, n-CdGeAs2, n-InSb, p-CdS, stressed InSb, PbTe and Bismuth. This reflects the combined signatures of magnetic and spatial quantizations of the carriers in such structures. The TP also decreases with increasing electron statistics and under the condition of non-degeneracy, all the results as derived in this paper get transformed into the well-known classical equation of TP and thus confirming the compatibility test. We have also suggested an experimental method of determining the elastic constants in such systems with arbitrary carrier energy spectra from the known value of the TP. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Starting from the exact general relativistic expression for the total energy of selfgravitating spherically distributed matter and using the minimum energy priciple, we calculate the upper mass limit for a neutron star to be 3.1 solar masses.