971 resultados para MARTEL-INLET
Resumo:
The purpose of this master’s thesis was to study ways to increase the operating cost-efficiency of the hydrogen production process by optimizing the process parameters while, at the same time, maintaining plant reliability and safety. The literature part reviewed other hydrogen production and purification processes as well as raw material alternatives for hydrogen production. The experimental part of the master’s thesis was conducted at Solvay Chemicals Finland Oy’s hydrogen plant in spring 2012. It was performed by changing the process parameters, first, one by one, aiming for a more efficient process with clean product gas and lower natural gas consumption. The values of the process parameters were tested based on the information from the literature, process simulation and experiences of previous similar processes. The studied parameters were reformer outlet temperature, shift converter inlet temperature and steam/carbon ratio. The results show that the optimal process conditions are a lower steam/carbon ratio and reformer outlet temperature than the current values of 3.0 and 798 °C. An increase/decrease in the shift conversion inlet temperature does not affect natural gas consumption, but it has an effect on minimizing the process steam overload.
Resumo:
ABSTRACTObjective:to assess the impact of the shift inlet trauma patients, who underwent surgery, in-hospital mortality.Methods:a retrospective observational cohort study from November 2011 to March 2012, with data collected through electronic medical records. The following variables were statistically analyzed: age, gender, city of origin, marital status, admission to the risk classification (based on the Manchester Protocol), degree of contamination, time / admission round, admission day and hospital outcome.Results:during the study period, 563 patients injured victims underwent surgery, with a mean age of 35.5 years (± 20.7), 422 (75%) were male, with 276 (49.9%) received in the night shift and 205 (36.4%) on weekends. Patients admitted at night and on weekends had higher mortality [19 (6.9%) vs. 6 (2.2%), p=0.014, and 11 (5.4%) vs. 14 (3.9%), p=0.014, respectively]. In the multivariate analysis, independent predictors of mortality were the night admission (OR 3.15), the red risk classification (OR 4.87), and age (OR 1.17).Conclusion:the admission of night shift and weekend patients was associated with more severe and presented higher mortality rate. Admission to the night shift was an independent factor of surgical mortality in trauma patients, along with the red risk classification and age.
On the development of an unstructured grid solver for inert and reactive high speed flow simulations
Resumo:
An unstructured grid Euler solver for reactive compressible flow applications is presented. The method is implemented in a cell centered, finite volume context for unstructured triangular grids. Three different schemes for spatial discretization are implemented and analyzed. Time march is implemented in a time-split fashion with independent integrators for the flow and chemistry equations. The capability implemented is tested for inert flows in a hypersonic inlet and for inert and reactive supersonic flows over a 2-D wedge. The results of the different schemes are compared with each other and with independent calculations using a structured grid code. The strengths and the possible weaknesses of the proposed methods are discussed.
Resumo:
An experimental investigation is performed in a turbulent flow in a seven wire-wrapped rod bundle, mounted in an open air facility. Static pressure distributions are measured on central and peripheral rods. By using a Preston tube, the wall shear stress profiles are experimentally obtained along the perimeter of the rods. The geometric parameters of the test section are P/D=1.20 and H/D=15. The measuring section is located at L/D=40 from the air inlet. It is observed that the dimensionless static pressure and wall shear stress profiles are nearly independent of the Reynolds number and strongly dependent of the wire-spacer position, with abrupt variations of the parameters in the neighborhood of the wires.
Resumo:
Fuel elements of PWR type nuclear reactors consist of rod bundles, arranged in a square array, and held by spacer grids. The coolant flows, mainly, axially along the rods. Although such elements are laterally open, experiments are performed in closed type test sections, originating the appearance of subchannels with different geometries. In the present work, utilizing a test section of two bundles of 4x4 pins each, experiments were performed to determine the friction and the grid drag coefficients for the different subchannels and to observe the effect of the grids in the crossflow, in cases of inlet flow maldistribution.
Resumo:
Products developed at industries, institutes and research centers are expected to have high level of quality and performance, having a minimum waste, which require efficient and robust tools to numerically simulate stringent project conditions with great reliability. In this context, Computational Fluid Dynamics (CFD) plays an important role and the present work shows two numerical algorithms that are used in the CFD community to solve the Euler and Navier-Stokes equations applied to typical aerospace and aeronautical problems. Particularly, unstructured discretization of the spatial domain has gained special attention by the international community due to its ease in discretizing complex spatial domains. This work has the main objective of illustrating some advantages and disadvantages of numerical algorithms using structured and unstructured spatial discretization of the flow governing equations. Numerical methods include a finite volume formulation and the Euler and Navier-Stokes equations are applied to solve a transonic nozzle problem, a low supersonic airfoil problem and a hypersonic inlet problem. In a structured context, these problems are solved using MacCormacks implicit algorithm with Steger and Warmings flux vector splitting technique, while, in an unstructured context, Jameson and Mavriplis explicit algorithm is used. Convergence acceleration is obtained using a spatially variable time stepping procedure.
Resumo:
The formal calibration procedure of a phase fraction meter is based on registering the outputs resulting from imposed phase fractions at known flow regimes. This can be straightforwardly done in laboratory conditions, but is rarely the case in industrial conditions, and particularly for on-site applications. Thus, there is a clear need for less restrictive calibration methods regarding to the prior knowledge of the complete set of inlet conditions. A new procedure is proposed in this work for the on-site construction of the calibration curve from total flown mass values of the homogeneous dispersed phase. The solution is obtained by minimizing a convenient error functional, assembled with data from redundant tests to handle the intrinsic ill-conditioned nature of the problem. Numerical simulations performed for increasing error levels demonstrate that acceptable calibration curves can be reconstructed, even from total mass measured within a precision of up to 2%. Consequently, the method can readily be applied, especially in on-site calibration problems in which classical procedures fail due to the impossibility of having a strict control of all the input/output parameters.
Resumo:
Hydraulic head is distributed through a medium with porous aspect. The analysis of hydraulic head from one point to another is used by the Richard's equation. This equation is equivalent to the groundwater ow equation that predicts the volumetric water contents. COMSOL 3.5 is used for computation applying Richard's equation. A rectangle of 100 meters of length and 10 meters of large (depth) with 0,1 m/s fl ux of inlet as source of our fl uid is simulated. The domain have Richards' equation model in two dimension (2D). Hydraulic head increases proportional with moisture content.
Resumo:
Demand for the use of energy systems, entailing high efficiency as well as availability to harness renewable energy sources, is a key issue in order to tackling the threat of global warming and saving natural resources. Organic Rankine cycle (ORC) technology has been identified as one of the most promising technologies in recovering low-grade heat sources and in harnessing renewable energy sources that cannot be efficiently utilized by means of more conventional power systems. The ORC is based on the working principle of Rankine process, but an organic working fluid is adopted in the cycle instead of steam. This thesis presents numerical and experimental results of the study on the design of small-scale ORCs. Two main applications were selected for the thesis: waste heat re- covery from small-scale diesel engines concentrating on the utilization of the exhaust gas heat and waste heat recovery in large industrial-scale engine power plants considering the utilization of both the high and low temperature heat sources. The main objective of this work was to identify suitable working fluid candidates and to study the process and turbine design methods that can be applied when power plants based on the use of non-conventional working fluids are considered. The computational work included the use of thermodynamic analysis methods and turbine design methods that were based on the use of highly accurate fluid properties. In addition, the design and loss mechanisms in supersonic ORC turbines were studied by means of computational fluid dynamics. The results indicated that the design of ORC is highly influenced by the selection of the working fluid and cycle operational conditions. The results for the turbine designs in- dicated that the working fluid selection should not be based only on the thermodynamic analysis, but requires also considerations on the turbine design. The turbines tend to be fast rotating, entailing small blade heights at the turbine rotor inlet and highly supersonic flow in the turbine flow passages, especially when power systems with low power outputs are designed. The results indicated that the ORC is a potential solution in utilizing waste heat streams both at high and low temperatures and both in micro and larger scale appli- cations.
Resumo:
Wind energy has obtained outstanding expectations due to risks of global warming and nuclear energy production plant accidents. Nowadays, wind farms are often constructed in areas of complex terrain. A potential wind farm location must have the site thoroughly surveyed and the wind climatology analyzed before installing any hardware. Therefore, modeling of Atmospheric Boundary Layer (ABL) flows over complex terrains containing, e.g. hills, forest, and lakes is of great interest in wind energy applications, as it can help in locating and optimizing the wind farms. Numerical modeling of wind flows using Computational Fluid Dynamics (CFD) has become a popular technique during the last few decades. Due to the inherent flow variability and large-scale unsteadiness typical in ABL flows in general and especially over complex terrains, the flow can be difficult to be predicted accurately enough by using the Reynolds-Averaged Navier-Stokes equations (RANS). Large- Eddy Simulation (LES) resolves the largest and thus most important turbulent eddies and models only the small-scale motions which are more universal than the large eddies and thus easier to model. Therefore, LES is expected to be more suitable for this kind of simulations although it is computationally more expensive than the RANS approach. With the fast development of computers and open-source CFD software during the recent years, the application of LES toward atmospheric flow is becoming increasingly common nowadays. The aim of the work is to simulate atmospheric flows over realistic and complex terrains by means of LES. Evaluation of potential in-land wind park locations will be the main application for these simulations. Development of the LES methodology to simulate the atmospheric flows over realistic terrains is reported in the thesis. The work also aims at validating the LES methodology at a real scale. In the thesis, LES are carried out for flow problems ranging from basic channel flows to real atmospheric flows over one of the most recent real-life complex terrain problems, the Bolund hill. All the simulations reported in the thesis are carried out using a new OpenFOAM® -based LES solver. The solver uses the 4th order time-accurate Runge-Kutta scheme and a fractional step method. Moreover, development of the LES methodology includes special attention to two boundary conditions: the upstream (inflow) and wall boundary conditions. The upstream boundary condition is generated by using the so-called recycling technique, in which the instantaneous flow properties are sampled on aplane downstream of the inlet and mapped back to the inlet at each time step. This technique develops the upstream boundary-layer flow together with the inflow turbulence without using any precursor simulation and thus within a single computational domain. The roughness of the terrain surface is modeled by implementing a new wall function into OpenFOAM® during the thesis work. Both, the recycling method and the newly implemented wall function, are validated for the channel flows at relatively high Reynolds number before applying them to the atmospheric flow applications. After validating the LES model over simple flows, the simulations are carried out for atmospheric boundary-layer flows over two types of hills: first, two-dimensional wind-tunnel hill profiles and second, the Bolund hill located in Roskilde Fjord, Denmark. For the twodimensional wind-tunnel hills, the study focuses on the overall flow behavior as a function of the hill slope. Moreover, the simulations are repeated using another wall function suitable for smooth surfaces, which already existed in OpenFOAM® , in order to study the sensitivity of the flow to the surface roughness in ABL flows. The simulated results obtained using the two wall functions are compared against the wind-tunnel measurements. It is shown that LES using the implemented wall function produces overall satisfactory results on the turbulent flow over the two-dimensional hills. The prediction of the flow separation and reattachment-length for the steeper hill is closer to the measurements than the other numerical studies reported in the past for the same hill geometry. The field measurement campaign performed over the Bolund hill provides the most recent field-experiment dataset for the mean flow and the turbulence properties. A number of research groups have simulated the wind flows over the Bolund hill. Due to the challenging features of the hill such as the almost vertical hill slope, it is considered as an ideal experimental test case for validating micro-scale CFD models for wind energy applications. In this work, the simulated results obtained for two wind directions are compared against the field measurements. It is shown that the present LES can reproduce the complex turbulent wind flow structures over a complicated terrain such as the Bolund hill. Especially, the present LES results show the best prediction of the turbulent kinetic energy with an average error of 24.1%, which is a 43% smaller than any other model results reported in the past for the Bolund case. Finally, the validated LES methodology is demonstrated to simulate the wind flow over the existing Muukko wind farm located in South-Eastern Finland. The simulation is carried out only for one wind direction and the results on the instantaneous and time-averaged wind speeds are briefly reported. The demonstration case is followed by discussions on the practical aspects of LES for the wind resource assessment over a realistic inland wind farm.
Resumo:
Ectopic gastric mucosa (EGM) is considered to be a congenital condition. Rare cases of adenocarcinoma have been described. There are no data justifying regular biopsies or follow-up. Cyclooxygenase-2 (COX-2) is a protein involved in gastrointestinal tumor development by inhibiting apoptosis and regulating angiogenesis. The aim of this prospective study was to evaluate COX-2 expression in EGM and compare it with normal tissue and Barrett's esophagus. We evaluated 1327 patients. Biopsies were taken from the inlet patch for histological evaluation and from the gastric antrum to assess Helicobacter pylori infection. Biopsies taken from normal esophageal, gastric antrum and body mucosa and Barrett's esophagus were retrieved from a tissue bank. EGM biopsies were evaluated with respect to type of epithelium, presence of H. pylori, and inflammation. COX-2 was detected by immunohistochemistry using the avidin-biotin complex. EGM islets were found in 14 patients (1.1%). Histological examination revealed fundic type epithelium in 58.3% of cases, H. pylori was present in 50% and chronic inflammation in 66.7%. Expression of COX-2 was negative in normal distal esophagus, normal gastric antrum and normal gastric body specimens (10 each). In contrast, EGM presented over-expression of COX-2 in 41.7% of cases and Barrett's esophagus in 90% of cases (P = 0.04 and 0.03, respectively). COX-2 immunoexpression in EGM was not related to gender, age, epithelium type, presence of inflammation or intestinal metaplasia, H. pylori infection, or any endoscopic finding. Our results demonstrate up-regulation of COX-2 in EGM, suggesting a possible malignant potential of this so-called harmless mucosa.
Resumo:
Alkaline phosphatase (ALP) is important in calcification and its expression seems to be associated with the inflammatory process. We investigated the in vitro acute effects of compounds used for the prevention or treatment of cardiovascular diseases on total ALP activity from male Wistar rat heart homogenate. ALP activity was determined by quantifying, at 410 nm, the p-nitrophenol released from p-nitrophenylphosphate (substrate in Tris buffer, pH 10.4). Using specific inhibitors of ALP activity and the reverse transcription-polymerase chain reaction, we showed that the rat heart had high ALP activity (31.73 ± 3.43 nmol p-nitrophenol·mg protein-1·min-1): mainly tissue-nonspecific ALP but also tissue-specific intestinal ALP type II. Both ALP isoenzymes presented myocardial localization (striated pattern) by immunofluorescence. ALP was inhibited a) strongly by 0.5 mM levamisole, 2 mM theophylline and 2 mM aspirin (91, 77 and 84%, respectively) and b) less strongly by 2 mM L-phenylalanine, 100 mL polyphenol-rich beverages and 0.5 mM progesterone (24, 21 to 29 and 11%, respectively). β-estradiol and caffeine (0.5 and 2 mM) had no effect; 0.5 mM simvastatin and 2 mM atenolol activated ALP (32 and 36%, respectively). Propranolol (2 mM) tended to activate ALP activity and corticosterone activated (18%) and inhibited (13%) (0.5 and 2 mM, respectively). We report, for the first time, that the rat heart expresses intestinal ALP type II and has high total ALP activity. ALP activity was inhibited by compounds used in the prevention of cardiovascular pathology. ALP manipulation in vivo may constitute an additional target for intervention in cardiovascular diseases.
Resumo:
A complet factorial experimental design was applied to determinate the influence of the variable inlet air temperature, feed flow rate, and atomizer speed on the physical properties of the tomato pulp powder. Results showed that these variables had a significant positive effect on the moisture content, apparent density, and particle size and no significant effects on the porosity and true density. The best spray drying conditions to produce lower moisture content and higher apparent density tomato powder were inlet air temperature of 200 °C, feed flow rate of 276 g/min, and atomizer speed of 30000 rpm.
Resumo:
Docosahexaenoic acid is an essential polyunsaturated fatty acid with important metabolic activities. Its conjugated double bonds make it susceptible to decomposition. Its stability may be improved through fatty acid entrapment with a spray-drying technique; however, the many parameters involved in this technique must be considered to avoid affecting the final product quality. Therefore, this study aimed to evaluate the entrapment conditions and yields of fish oil enriched with docosahexaenoic acid ethyl ester. Microcapsules were obtained from Acacia gum using a spray-drying technique. The experimental samples were analyzed by chromatography and delineated by Statistica software, which found the following optimum entrapment conditions: an inlet temperature of 188 °C; 30% core material; an N2 flow rate of 55 mm; and a pump flow rate of 12.5 mL/minute. These conditions provided a 66% yield of docosahexaenoic acid ethyl ester in the oil, corresponding to 19.8% of entrapped docosahexaenoic acid ethyl ester (w/w). This result was considered significant since 30% corresponded to wall material.
Resumo:
Cheese whey permeate was used as a substrate for the fermentation of Propionibacterium freudenreichi PS1 for the production of short chain fatty acids, components of the bio-aroma of Swiss cheese. The liquid bio-aroma was encapsulated by spray drying under different conditions of air inlet temperature and feed rate. A study was carried out on the stability of the bio-aroma during storage in laminated packages at 30 °C for 96 days using the product showing the greatest retention of acetic and propionic acids. The results showed that the best drying conditions were an air entrance temperature of 180 °C and a feed rate of 24 g/min resulting in particles with a smooth surface and few invaginations and micro-fissures. However, 72% of the acetic acid and 80% of the propionic acid were lost during storage showing that the wall material used was inadequate to guarantee product stability.