973 resultados para MANGANESE SILICATES
Resumo:
Probable in-situ manganese deposits larger than 1 cm in diameter buried in ODP/DSDP cores were selected for study after examining previous descriptions of the manganese deposits in site reports and the ODP data base. Most of the selected samples from 11 cores occur at or just above sedimentary hiatuses or in slowly deposited sediments and are overlain by rapidly deposited sediments of biogenic, terrigenous or volcanogenic origin. The changes in sedimentation recorded in the lithostratigraphic sections around these deposits are closely related to changes in tectonic evolution, deep water circulation or biological productivity at the sites. The similarity in composition and structure of the buried deposits to those of the modern manganese nodules and crusts with no evidence of post-depositional change suggest that buried manganese deposits may be used as indicators of past sedimentary conditions during which they formed. Their major components are hydrogenetic and earlydiagenetic manganese minerals as well as detrital minerals. The characteristics of these manganese deposits suggests that similar processes of deposition have taken place since the Paleogene or older.
Resumo:
Iron and manganese in bottom sediments studied along the sublatitudinal transect from Kandalaksha to Arkhangelsk are characterized by various contents and speciations depending on sedimentation environment, grain size of sediments, and diagenetic processes. The latter include redistribution of reactive forms leading to enrichment in Fe and Mn of surface sediments, formation of films, incrustations, and ferromanganese nodules. Variations in total Fe content (2-8%) are accompanied by changes in concentration of its reactive forms (acid extraction) and concentration of dissolved Fe in interstitial waters (1-14 µM). Variations in Mn content in bottom sediments (0.03-3.7%) and interstitial waters (up to 500 µM) correspond to high diagenetic mobility of this element. Changes in oxidation degree of chemical elements result in redox stratification of sediment strata with maximum concentrations of Fe, Mn, and sulfides. Organic matter of bottom sediments with considerable terrestrial constituent is oxidized by bottom water oxygen mainly at the sediment surface or in anaerobic conditions within the sediment strata. The role of inorganic components in organic matter oxidation changes from surface layer bottom sediments (where manganese oxyhydroxide dominates among oxidants) to deeper layers (where sulfate of interstitial water serves as the main oxidant). Differences in river runoff and hydrodynamics are responsible for geochemical asymmetry of the transect. The deep Kandalaksha Bay serves as a sediment trap for manganese (Mn content in sediments varies within 0.5-0.7%), whereas the sedimentary environment in the Dvina Bay promotes its removal from bottom sediments (Mn 0.05%).
Resumo:
Die Genese von Mangan-Eisen-Akkumulaten der Kieler Bucht wurde durch In-situ-Experimente vor allem in Tauchgängen unter Berücksichtigung der hydrographischen und sedimentologischen Gegebenheiten sowie natürlicher Akkumulatvorkommen und Krusten auf künstlichen Substraten untersucht. An den diagenetisch gebildeten Akkumulaten wurden chemische Zusammensetzung, Mineralogie, physikalische Parameter, Morphologie und Internstrukturen untersucht. Wichtige Faktoren für die Entstehung der Mangan-Eisen-Akkumulate sind geringe Sedimentationsraten am Entstehungsort, das Vorhandensein geeigneter Anlagerungskerne sowie ausreichende Zufuhr von gelöstem Mangan und anderen Metallen durch Diffusion aus dem Sediment und durch lateralen Transport im freien Wasser vor allem im Sommer und Frühherbst infolge absinkender Sauerstoffgehalte im Bodenwasser der Rinnen. Die Experimente ergaben eine saisonale Abscheidungscharakteristik der Mangan-Eisen-Oxide in Abhängigkeit von der hydrographischen Jahresentwicklung mit niedrigen Zuwachsraten im Winter und Frühjahr und hohen Werten im Sommer und Herbst. Die 1981 experimentell ermittelte Wachstumsrate liegt im Bereich der südlichen Kieler Bucht (Boknis Eck) bei ca. 20 mm/1000 a. Für das Vorkommen vor Schleimünde wurden in Anlehnung an SUESS & DJAFARI (1977) 30-50 mm/1000 a berechnet. Unter reduzierenden Bedingungen infolge Sedimentüberdeckung können Mangan-Eisen-Akkumulate partiell oder vollständig wieder aufgelöst werden. Für den Verbleib der Akkumulate an der Sedimentoberfläche wird die Bedeutung der Seenelke Metridium senile nachgewiesen.
Resumo:
Study of chemical composition of 26 samples collected at depths from 400 to 1400 m on vertex surfaces of the Southeast Indian Ridge, Mascarene Ridge, Madagascar Ridge, and Mozambique Ridge, as well as on the upper part of the Southeast Africa continental slope showed that the samples represent three groups of rocks: 1) low phosphate or phosphate-free ferromanganese rocks, 2) phosphate ferromanganese rocks 3) phosphorites and phosphatized limestones.
Resumo:
The Ocean Drilling Program (ODP) Site 959 was drilled in the northern border of the Côte d'Ivoire-Ghana Ridge at a water depth of 2100 m. Pleistocene total thickness does not exceed 20 m. Winnowing processes resulted in a low accumulation rate and notable stratigraphic hiatuses. During the Late Pleistocene, bottom circulation was very active and controlled laminae deposition (contourites) which increased the concentration of glauconitic infillings of foraminifera, and of volcanic glass and blue-green grains more rarely, with one or several subordinate ferromagnesian silicates. Volcanic glass generally was X-ray amorphous and schematically classified as basic to intermediate (44-60% SiO2). Opal-A or opal-CT suggested the beginning of the palagonitisation process, and previous smectitic deposits may have been eroded mechanically. The blue-green grains presented two main types of mineralogic composition: (1) neoformed K, Fe-smectite associated with zeolite (like phillipsite) and unequal amounts of quartz and anorthite; (2) feldspathic grains dominated by albite but including quartz, volcanic glass and smectites as accessory components. They were more or less associated with the volcanic glass. On the basis of their chemical composition, the genetic relationship between the blue-green grains and the volcanic glass seemed to be obvious although some heterogeneous grains seemed to be primary ignimbrite and not the result of glass weathering. The most reasonable origin of these pyroclastic ejecta would be explosive events from the Cameroon Volcanic Ridge, especially from the Sao Thome and Principe Islands and Mount Cameroon area. This is supported both by grain geochemistry and the time of volcanic activity, i.e. Pleistocene. After westward wind transport (some 1200 km) and ash fall-out, the subsequent winnowing by bottom currents controlled the concentration of the volcanic grains previously disseminated inside the hemipelagic sediment. Palagonitisation, and especially phillipsite formation, may result from a relatively rapid reaction during burial diagenesis (<1 m.y.), in deep-sea deposits at relatively low sedimentation rate. However, it cannot be excluded that the weathering had begun widely on the Cameroon Ridge before the explosive event.
Resumo:
New geochemical data on serpentinite muds and metamorphic clasts recovered during Ocean Drilling Program Legs 195 (Holes 1200A-1200E) and 125 (Holes 778A and 779A) provide insights into the proportions of rock types of various sources that compose the serpentinite mudflows and the fluid-rock interactions that predominate in these muds. We interpret the metamorphic rock fragments as derivatives of mostly metamorphosed mafic rocks from the descending Pacific oceanic crust. Based on their mid-ocean-ridge basalt (MORB)-like Al2O3, TiO2, CaO, Si/Mg, and rare earth element (REE) systematics, these metamorphic rocks are classified as metabasalts/metagabbros and, therefore, ~30-km depths represent an active subduction zone setting. The serpentinite muds from Holes 1200A and 1200E have slightly lower REE when compared to Hole 1200D, but overall the REE abundance levels range between 0.1-1 x chondrite (CI) levels. The chondrite-normalized patterns have [La/Sm]N ~ 2.3 and [Sm/Yb]N ~ 2. With the exception of one sample, the analyzed metamorphic clasts show flat to slightly depleted light REE patterns with 1.0-15 x CI levels, resembling MORBs. Visually, ~6 vol% of the serpentinized muds are composed of 'exotic' materials (metamorphic clasts [schists]). Our mixing calculations confirm this result and show that the serpentinite muds are produced by additions of ~5% metamafic materials (with flat and up to 10 x CI REE levels) to serpentinized peridotite clast material (with very low REE abundances and U-shaped chondrite-normalized patterns). The preferential incorporation of B, Cs, Rb, Li, As, Sb, and Ba into the structure of H2O-bearing sheet silicates (different than serpentine) in the Leg 125 and Leg 195 metamorphic clasts (chlorite, amphibole, and micas) have little effect on the overall fluid-mobile element (FME) enrichments in the serpentinite muds (average B = ~13 ppm; average Cs = ~0.05 ppm; average As = ~1.25 ppm). The extent of FME enrichment in the serpentinized muds is similar to that described for the serpentinized peridotites, both recording interaction with fluids very rich in B, Cs, and As originating from the subducting Pacific slab.
Resumo:
A manganese oxide crust from an extensive deposit in the median valley of the Mid-Atlantic Ridge was found to be unusually high in manganese (up to 39.4% Mn), low in Fe (as low as 0.01% Fe), low in trace metals and deficient in Th230 and Pa231 with respect to the parent uranium isotopes in the sample. The accumulation rate is 100 mm to 200 mm/10 million year, or 2 orders of magnitude faster than the typical rate for deep-sea ferromanganese deposits. The rapid growth rate and unusual chemistry are consistent with a hydrothermal origin or with a diagenetic origin by manganese remobilized from reduced sediments. Because of the association with an active ridge, geophysical evidence indicative of hydrothermal activity, and a scarcity of sediment in the sampling area, we suggest that a submarine hot spring has created the deposit.
Resumo:
Concentrations of dissolved and particulate manganese in relation with organic matter in waters of the Southwest Pacific are under consideration.
Resumo:
Manganese contents in reduced sediments and accumulation rates were investigated. Their values in sediments of most of cores are background (0.03-0.07 %).Anomalous concentrations (up to 2.5 %) and accumulation rates (up to 60 mg/cm**2/ka) occur near the known region of hydrothermal barite mineralization in the Derugin Basin. High accumulation rates of Mn (>10 mg/cm**2/ka) also occur in Holocene sediments to south-east from the Derugin Basin. It can be assumed that high Mn contents and accumulation rates occur there due to transportation of Mn-rich water from the Derugin Basin in the near-bottom layer under the lower border of the Sea of Okhotsk Intermediate Water. Intensive Mn accumulation is also typical for the South Okhotsk Basin near the Bussol Strait. Mn accumulation rates of glacial sediments of the second oxygen isotope stage are less significant, which is presumed to be caused by paleoceanological reasons.
Resumo:
Samples recovered from Hole 504B during Leg 140 include a number of medium-grained, holocrystalline diabases that appear to represent the cores of thick dikes. The plagioclase and pyroxene in these samples occur in a variety of crystal morphologies. Plagioclase occurs as phenocrysts, microphenocrysts, elongate crystals, skeletal crystals, and branching radial clusters. Pyroxene occurs as phenocrysts, microphenocrysts, ophitic crystals, and poikilitic crystals. Plagioclase compositions became progressively poorer in anorthite and MgO and progressively richer in FeO as crystallization proceeded, while the average grain volume decreased and the aspect ratio of individual grains increased. Pyroxene compositions are largely independent of crystal morphology. The diabase dikes recovered from Hole 504B during Leg 140 appear to have crystallized in situ. Crystal compositions and morphologies are consistent with a rapid cooling rate and solidification times for individual dikes on the order of hours or days. The crystallization rate and nucleation rate of plagioclase lagged behind the cooling rate so that the degree of undercooling progressively increased as crystallization proceeded. Plagioclase crystal morphologies indicate much greater degrees of supersaturation than do pyroxene or olivine crystal morphologies. The 504B diabase magmas appear to have been emplaced with abundant preexisting pyroxene and olivine nuclei, but with few preexisting plagioclase nuclei. The suppression of plagioclase nucleation and crystallization relative to that of pyroxene and olivine could provide a mechanism by which the actual fractionation assemblage is more pyroxene-rich and plagioclase-poor than that predicted from thermodynamic models, or that observed in isothermal crystallization experiments.