806 resultados para Literacy in mathematics
Resumo:
L’introduction aux concepts unificateurs dans l’enseignement des mathématiques privilégie typiquement l’approche axiomatique. Il n’est pas surprenant de constater qu’une telle approche tend à une algorithmisation des tâches pour augmenter l’efficacité de leur résolution et favoriser la transparence du nouveau concept enseigné (Chevallard, 1991). Cette réponse classique fait néanmoins oublier le rôle unificateur du concept et n’encourage pas à l’utilisation de sa puissance. Afin d’améliorer l’apprentissage d’un concept unificateur, ce travail de thèse étudie la pertinence d’une séquence didactique dans la formation d’ingénieurs centrée sur un concept unificateur de l’algèbre linéaire: la transformation linéaire (TL). La notion d’unification et la question du sens de la linéarité sont abordées à travers l’acquisition de compétences en résolution de problèmes. La séquence des problèmes à résoudre a pour objet le processus de construction d’un concept abstrait (la TL) sur un domaine déjà mathématisé, avec l’intention de dégager l’aspect unificateur de la notion formelle (Astolfi y Drouin, 1992). À partir de résultats de travaux en didactique des sciences et des mathématiques (Dupin 1995; Sfard 1991), nous élaborons des situations didactiques sur la base d’éléments de modélisation, en cherchant à articuler deux façons de concevoir l’objet (« procédurale » et « structurale ») de façon à trouver une stratégie de résolution plus sûre, plus économique et réutilisable. En particulier, nous avons cherché à situer la notion dans différents domaines mathématiques où elle est applicable : arithmétique, géométrique, algébrique et analytique. La séquence vise à développer des liens entre différents cadres mathématiques, et entre différentes représentations de la TL dans les différents registres mathématiques, en s’inspirant notamment dans cette démarche du développement historique de la notion. De plus, la séquence didactique vise à maintenir un équilibre entre le côté applicable des tâches à la pratique professionnelle visée, et le côté théorique propice à la structuration des concepts. L’étude a été conduite avec des étudiants chiliens en formation au génie, dans le premier cours d’algèbre linéaire. Nous avons mené une analyse a priori détaillée afin de renforcer la robustesse de la séquence et de préparer à l’analyse des données. Par l’analyse des réponses au questionnaire d’entrée, des productions des équipes et des commentaires reçus en entrevus, nous avons pu identifier les compétences mathématiques et les niveaux d’explicitation (Caron, 2004) mis à contribution dans l’utilisation de la TL. Les résultats obtenus montrent l’émergence du rôle unificateur de la TL, même chez ceux dont les habitudes en résolution de problèmes mathématiques sont marquées par une orientation procédurale, tant dans l’apprentissage que dans l’enseignement. La séquence didactique a montré son efficacité pour la construction progressive chez les étudiants de la notion de transformation linéaire (TL), avec le sens et les propriétés qui lui sont propres : la TL apparaît ainsi comme un moyen économique de résoudre des problèmes extérieurs à l’algèbre linéaire, ce qui permet aux étudiants d’en abstraire les propriétés sous-jacentes. Par ailleurs, nous avons pu observer que certains concepts enseignés auparavant peuvent agir comme obstacles à l’unification visée. Cela peut ramener les étudiants à leur point de départ, et le rôle de la TL se résume dans ces conditions à révéler des connaissances partielles, plutôt qu’à guider la résolution.
Resumo:
La thèse porte sur l’analyse qualitative de situations didactiques intégrées au programme de prévention au préscolaire Fluppy. Conçu pour la prévention de la violence et du décrochage scolaire (Tremblay et al., 1992, Tremblay et al., 1995), ce programme s’est enrichi depuis une dizaine d’années de différentes composantes d’intervention, dont une sur l’enseignement du français et des mathématiques. Ce programme, relevant aujourd’hui d’une approche multimodale, a fait l’objet d’une évaluation d’impact en 2002-2004 (Capuano et al., 2010). Le devis quasi-expérimental n’a cependant pas permis de procéder à une analyse appropriée au cadre méthodologique, l’ingénierie didactique (Artigue, 1990), sur lequel se fondent les situations didactiques en mathématiques. La thèse procède donc à la validation interne des trois séquences numériques, issues de la composante mathématique, telles qu’expérimentées dans deux classes du préscolaire en 2011-2012. La première séquence vise au développement des connaissances sur la désignation de quantités. La deuxième sur la comparaison numérique et, la troisième, sur la composition additive des nombres. Les analyses mettent en évidence : 1) certains décalages entre la proposition didactique et la réalisation effective des situations; 2) l’évolution des connaissances numériques des élèves; 3) les forces et les limites de l’analyse a priori. L’interprétation des résultats ouvre sur un enrichissement de l’analyse a priori des situations didactiques ainsi que sur de nouvelles considérations relatives aux processus de dévolution et d’institutionnalisation dans le cadre de l’appropriation de situations didactiques par des enseignants du préscolaire.
Resumo:
La mémoire à court terme visuelle (MCTv) est un système qui permet le maintien temporaire de l’information visuelle en mémoire. La capacité en mémoire à court terme se définit par le nombre d’items qu’un individu peut maintenir en mémoire sur une courte période de temps et est limitée à environ quatre items. Il a été démontré que la capacité en MCTv et les habiletés mathématiques sont étroitement liées. La MCTv est utile dans beaucoup de composantes liées aux mathématiques, comme la résolution de problèmes, la visualisation mentale et l’arithmétique. En outre, la MCTv et le raisonnement mathématique font appel à des régions similaires du cerveau, notamment dans le cortex pariétal. Le sillon intrapariétal (SIP) semble être particulièrement important, autant dans la réalisation de tâches liées à la MCTv qu’aux habiletés mathématiques. Nous avons créé une tâche de MCTv que 15 participants adultes en santé ont réalisée pendant que nous enregistrions leur activité cérébrale à l’aide de la magnétoencéphalographie (MEG). Nous nous sommes intéressés principalement à la composante SPCM. Une évaluation neuropsychologique a également été administrée aux participants. Nous souhaitions tester l’hypothèse selon laquelle l’activité cérébrale aux capteurs pariéto-occipitaux pendant la tâche de MCTv en MEG sera liée à la performance en mathématiques. Les résultats indiquent que l’amplitude de l’activité pariéto-occipitale pendant la tâche de MCTv permet de prédire les habiletés mathématiques ainsi que la performance dans une tâche de raisonnement perceptif. Ces résultats permettent de confirmer le lien existant entre les habiletés mathématiques et le fonctionnement sous-jacent à la MCTv.
Resumo:
Ce mémoire cherche à créer un dialogue entre les domaines de recherche du livre d’images et celui de recherches sur la paix afin d’exposer les différentes formes et fonctions des livres d’images pour la paix. Questionnant le pourquoi et le comment de ces œuvres, ce travail expose la façon et la manière avec lesquelles ces dernières contribuent à « l’alphabétisation de la paix » auprès des enfants et comment elles les motivent à agir en fonction de la paix. Les livres d’images constituent un média idéal pour éduquer les enfants à la paix. Très tôt dans le processus de socialisation, ces livres sauront transmettre et inculquer des concepts et aptitudes clefs et éventuellement ancrer dans l’esprit de l’enfant les valeurs d’une culture de la paix. Au centre de cette recherche est exposé le thème de la paix tel que traité à travers les œuvres de l’écrivaine autrichienne Mira Lobe (1913–1995). Par l’analyse de sept livres d’images pour la paix, ce travail explique quelles stratégies et méthodes littéraires, pédagogiques, sémiotiques, narratives et esthétiques sont employées par l’auteure pour réussir à bien présenter et à traiter de sujets politiques complexes et d’enjeux sociaux et humains parfois délicats et tabous à un jeune auditoire. Il montre également par quels moyens ces œuvres font naître l’empathie, une aversion pour la violence et comment elles pourront finalement amener les enfants à opter pour l’acte de la paix. En joignant et en mettant en relation les résultats et conclusions des deux champs de recherche observés dans ce travail, soit l’éducation à la paix et la recherche sur des livres d’images, il devient possible de démontrer comment Mira Lobe apporte, avec ses livres d’images pour la paix, une contribution universelle et intemporelle à l’éducation à la paix.
Resumo:
Une étude récente auprès de 302 mathématiciens canadiens révèle un écart intriguant : tandis que 43% des sondés utilisent la programmation informatique dans leur recherche, seulement 18% indiquent qu'ils emploient cette technologie dans leur enseignement (Buteau et coll., 2014). La première donnée reflète le potentiel énorme qu'a la programmation pour faire et apprendre des mathématiques. La deuxième donnée a inspiré ce mémoire : pourquoi existe-t-il un tel écart ? Pour répondre à cette question, nous avons mené une étude exploratoire qui cherche à mieux comprendre la place de la programmation dans la recherche et la formation en mathématiques au niveau universitaire. Des entrevues semi-dirigées ont été conduites avec 14 mathématiciens travaillant dans des domaines variés et à différentes universités à travers le pays. Notre analyse qualitative nous permet de décrire les façons dont ces mathématiciens construisent des programmes informatiques afin d'accomplir plusieurs tâches (p.e., simuler des phénomènes réels, faire des mathématiques « expérimentales », développer de nouveaux outils puissants). Elle nous permet également d'identifier des moments où les mathématiciens exposent leurs étudiants à certains éléments de ces pratiques en recherche. Nous notons toutefois que les étudiants sont rarement invités à concevoir et à écrire leurs propres programmes. Enfin, nos participants évoquent plusieurs contraintes institutionnelles : le curriculum, la culture départementale, les ressources humaines, les traditions en mathématiques, etc. Quelques-unes de ces contraintes, qui semblent limiter l'expérience mathématique des étudiants de premier cycle, pourraient être revues.
Resumo:
In order to explain Wittgenstein’s account of the reality of completed infinity in mathematics, a brief overview of Cantor’s initial injection of the idea into set- theory, its trajectory (including the Diagonal Argument, the Continuum Hypothesis and Cantor’s Theorem) and the philosophic implications he attributed to it will be presented. Subsequently, we will first expound Wittgenstein’s grammatical critique of the use of the term ‘infinity’ in common parlance and its conversion into a notion of an actually existing (completed) infinite ‘set’. Secondly, we will delve into Wittgenstein’s technical critique of the concept of ‘denumerability’ as it is presented in set theory as well as his philosophic refutation of Cantor’s Diagonal Argument and the implications of such a refutation onto the problems of the Continuum Hypothesis and Cantor’s Theorem. Throughout, the discussion will be placed within the historical and philosophical framework of the Grundlagenkrise der Mathematik and Hilbert’s problems.
Resumo:
Mathematical models are often used to describe physical realities. However, the physical realities are imprecise while the mathematical concepts are required to be precise and perfect. Even mathematicians like H. Poincare worried about this. He observed that mathematical models are over idealizations, for instance, he said that only in Mathematics, equality is a transitive relation. A first attempt to save this situation was perhaps given by K. Menger in 1951 by introducing the concept of statistical metric space in which the distance between points is a probability distribution on the set of nonnegative real numbers rather than a mere nonnegative real number. Other attempts were made by M.J. Frank, U. Hbhle, B. Schweizer, A. Sklar and others. An aspect in common to all these approaches is that they model impreciseness in a probabilistic manner. They are not able to deal with situations in which impreciseness is not apparently of a probabilistic nature. This thesis is confined to introducing and developing a theory of fuzzy semi inner product spaces.
Resumo:
The paper will consist of three parts. In part I we shall present some background considerations which are necessary as a basis for what follows. We shall try to clarify some basic concepts and notions, and we shall collect the most important arguments (and related goals) in favour of problem solving, modelling and applications to other subjects in mathematics instruction. In the main part II we shall review the present state, recent trends, and prospective lines of development, both in empirical or theoretical research and in the practice of mathematics instruction and mathematics education, concerning problem solving, modelling, applications and relations to other subjects. In particular, we shall identify and discuss four major trends: a widened spectrum of arguments, an increased globality, an increased unification, and an extended use of computers. In the final part III we shall comment upon some important issues and problems related to our topic.
Resumo:
The paper will consist of three parts. In part I we shall present some background considerations which are necessary as a basis for what follows. We shall try to clarify some basic concepts and notions, and we shall collect the most important arguments (and related goals) in favour of problem solving, modelling and applications to other subjects in mathematics instruction. In the main part II we shall review the present state, recent trends, and prospective lines of development, both in empirical or theoretical research and in the practice of mathematics instruction and mathematics education, concerning (applied) problem solving, modelling, applications and relations to other subjects. In particular, we shall identify and discuss four major trends: a widened spectrum of arguments, an increased globality, an increased unification, and an extended use of computers. In the final part III we shall comment upon some important issues and problems related to our topic.
Resumo:
The starting point of our reflections is a classroom situation in grade 12 in which it was to be proved intuitively that non-trivial solutions of the differential equation f' = f have no zeros. We give a working definition of the concept of preformal proving, as well as three examples of preformal proofs. Then we furnish several such proofs of the aforesaid fact, and we analyse these proofs in detail. Finally, we draw some conclusions for mathematics in school and in teacher training.
Resumo:
Ausgangspunkt dieser Dissertation ist die Überlegung, warum Mädchen und Frauen in mathematisch-naturwissenschaftlichen Fächern und Berufen unterrepräsentiert sind. Irrtümlicherweise werden als Erklärung hierfür häufig Geschlechterdifferenzen in der Mathematikleistung herangezogen. Diese bieten jedoch aufgrund nicht einheitlicher Forschungsbefunde keinen zufriedenstellenden Erklärungsansatz. Naheliegender ist es, das mangelnde Selbstvertrauen von Mädchen in Mathematik (als mathematisches Selbstkonzept bezeichnet) als Ursache heranzuziehen, denn verschiedene Studien kamen zu dem Ergebnis, dass Mädchen, auch bei vergleichbarer Leistung, ein geringeres mathematisches Selbstkonzept aufweisen als Jungen (Dickhäuser & Stiensmeier-Pelster, 2003; Frome & Eccles, 1998; Rustemeyer & Jubel, 1996; Skaalvik & Skaalvik, 2004). Die Rolle der Eltern als primäre Sozialisationsinstanz wird als bedeutsamer Einflussfaktor auf das mathematische Selbstkonzept von Kindern beschrieben. Besonders für den Bereich Mathematik besteht die Gefahr, dass Eltern durch geschlechtsstereotype Einstellungen und Erwartungen ihre Tochter ungünstig beeinflussen (Jacobs, 1991; Tiedemann, 2000). In dieser Arbeit wird untersucht, inwiefern Eltern Geschlechtsstereotype zuungunsten der Mädchen in Mathematik äußern und inwiefern sich diese – schon zur Grundschulzeit – in den elterlichen Einschätzungen (elterliche Leistungs- und Fähigkeitseinschätzungen sowie elterliche Ursachenerklärungen) des eigenen Kindes widerspiegeln. Es wird angenommen, dass Mädchen entsprechend dem klassischen Geschlechtsstereotyp weniger talentiert und weniger leistungsstark in Mathematik eingeschätzt werden als Jungen. Für die Einschätzungen des eigenen Kindes wird erwartet, dass diese geschlechtsspezifische Verzerrungen zuungunsten der Mädchen aufweisen. Anhand von Pfadmodellen wird in dieser Arbeit der Einfluss elterlicher Geschlechtsstereotype und Einschätzungen, unter Kontrolle der vorangegangenen Mathematikleistung und des vorangegangenen mathematischen Selbstkonzeptes des Kindes, auf das aktuelle mathematische Selbstkonzept des Kindes am Ende des dritten Schuljahres analysiert. Als Grundlage dienen Daten von circa 900 Schülern und 400 Eltern aus dem Projekt Persönlichkeits- und Lernentwicklung von Grundschulkindern (PERLE). Die Befunde der vorliegenden Arbeit können bisherige Forschungsbefunde aus dem Sekundarbereich für den Grundschulbereich replizieren und weitere erstmalige Befunde ergänzen. Zusammenfassend kann festgehalten werden, dass knapp zwei Drittel der Eltern Geschlechtsstereotype zuungunsten der Mädchen in Mathematik äußern. Die Pfadanalysen ergeben, dass nicht das Geschlecht des Kindes, sondern Wechselwirkungen zwischen Geschlecht und elterlichen Geschlechtsstereotypen die elterlichen Einschätzungen des eigenen Kindes beeinflussen. Wenn Eltern Geschlechtsstereotype vertreten, schätzen sie eine Tochter ungünstiger ein als einen Sohn (unabhängig von der tatsächlichen Mathematikleistung des Kindes). Die elterlichen Einschätzungen haben wiederum einen signifikanten Einfluss auf das mathematische Selbstkonzept des Kindes. Die Ergebnisse dieser Arbeit werden abschließend diskutiert und Ansätze für Interventionen aufgezeigt.
Resumo:
Abstract: Big Data has been characterised as a great economic opportunity and a massive threat to privacy. Both may be correct: the same technology can indeed be used in ways that are highly beneficial and those that are ethically intolerable, maybe even simultaneously. Using examples of how Big Data might be used in education - normally referred to as "learning analytics" - the seminar will discuss possible ethical and legal frameworks for Big Data, and how these might guide the development of technologies, processes and policies that can deliver the benefits of Big Data without the nightmares. Speaker Biography: Andrew Cormack is Chief Regulatory Adviser, Jisc Technologies. He joined the company in 1999 as head of the JANET-CERT and EuroCERT incident response teams. In his current role he concentrates on the security, policy and regulatory issues around the network and services that Janet provides to its customer universities and colleges. Previously he worked for Cardiff University running web and email services, and for NERC's Shipboard Computer Group. He has degrees in Mathematics, Humanities and Law.
Resumo:
El proyecto será desarrollado en base al modelo ecológico del desarrollo humano, (Bronfenbrenner, 1999) partiendo desde la explicación y conceptualización del modelo en términos generales, guiando la investigación hacia un ámbito organizacional en donde se podrá aplicar la teoría descrita por Bronfenbrenner y así, determinar cuál es la estructura y funcionalidad de los sistemas en el modelo además de establecer qué utilidad tiene en entornos empresariales por medio del análisis de los múltiples sistemas, relaciones, interacciones y efectos que tienen y que desarrollan las empresas u organizaciones en el transcurso de su vida. A lo largo de la investigación se hará referencia a diferentes conceptos relacionados tanto con el modelo como con el mundo en que se desarrollan las organizaciones, tales como clusters, sistemas, sectores, estrategias, marketing relacional, comunidad, interacciones, influencias, entre otros; los cuales permitirán acercar lo mayor posible el modelo de Bronfenbrenner al mundo empresarial y lograr desarrollar de mejor manera la intención de aplicar el modelo al mundo organizacional.
Resumo:
Resumen: Este trabajo estudia los resultados en matemáticas y lenguaje de 32000 estudiantes en la prueba saber 11 del 2008, de la ciudad de Bogotá. Este análisis reconoce que los individuos se encuentran contenidos en barrios y colegios, pero no todos los individuos del mismo barrio asisten a la misma escuela y viceversa. Con el fin de modelar esta estructura de datos se utilizan varios modelos econométricos, incluyendo una regresión jerárquica multinivel de efectos cruzados. Nuestro objetivo central es identificar en qué medida y que condiciones del barrio y del colegio se correlacionan con los resultados educacionales de la población objetivo y cuáles características de los barrios y de los colegios están más asociadas al resultado en las pruebas. Usamos datos de la prueba saber 11, del censo de colegios c600, del censo poblacional del 2005 y de la policía metropolitana de Bogotá. Nuestras estimaciones muestran que tanto el barrio como el colegio están correlacionados con los resultados en las pruebas; pero el efecto del colegio parece ser mucho más fuerte que el del barrio. Las características del colegio que están más asociadas con el resultado en las pruebas son la educación de los profesores, la jornada, el valor de la pensión, y el contexto socio económico del colegio. Las características de los barrios más asociadas con el resultado en las pruebas son, la presencia de universitarios en la UPZ, un clúster de altos niveles de educación y nivel de crimen en el barrio que se correlaciona negativamente. Los resultados anteriores fueron hallados teniendo en cuenta controles familiares y personales.
Resumo:
Se recoge el seminario de trabajo, The training and performance of primary teachers in mathematics education. En éste participaron expertos en formación de profesores de primaria de cinco paises europeos, como son Alemania, Holanda, Hungría, Suecia y España. Se hace una comparación entre los paises extranjeros y la situación en España, con tal de extraer los aspectos positivos que se derivan de la experiencia y aplicables a las bibliotecas del estado. Tras exponer las intervenciones de los diferentes profesores que han participado se analiza la situación actual y las posibles mejoras.