907 resultados para Lingual wire
Resumo:
This study evaluated the effect of specimens' design and manufacturing process on microtensile bond strength, internal stress distributions (Finite Element Analysis - FEA) and specimens' integrity by means of Scanning Electron Microscopy (SEM) and Laser Scanning Confocal Microscopy (LCM). Excite was applied to flat enamel surface and a resin composite build-ups were made incrementally with 1-mm increments of Tetric Ceram. Teeth were cut using a diamond disc or a diamond wire, obtaining 0.8 mm² stick-shaped specimens, or were shaped with a Micro Specimen Former, obtaining dumbbell-shaped specimens (n = 10). Samples were randomly selected for SEM and LCM analysis. Remaining samples underwent microtensile test, and results were analyzed with ANOVA and Tukey test. FEA dumbbell-shaped model resulted in a more homogeneous stress distribution. Nonetheless, they failed under lower bond strengths (21.83 ± 5.44 MPa)c than stick-shaped specimens (sectioned with wire: 42.93 ± 4.77 MPaª; sectioned with disc: 36.62 ± 3.63 MPa b), due to geometric irregularities related to manufacturing process, as noted in microscopic analyzes. It could be concluded that stick-shaped, nontrimmed specimens, sectioned with diamond wire, are preferred for enamel specimens as they can be prepared in a less destructive, easier, and more precise way.
Resumo:
Roofing provides the main protection against direct solar radiation in animal housing. Appropriate thermal properties of roofing materials tend to improve the thermal comfort in the inner ambient. Nonasbestos fiber-cement roofing components reinforced with cellulose pulp from sisal (Agave sisalana) were produced by slurry and dewatering techniques, with an optional addition of polypropylene fibers. Nonasbestos tiles were evaluated and compared with commercially available asbestos-cement sheets and ceramic tiles (frequently chosen as roofing materials for animal housing). Thermal conductivity and thermal diffusivity of tiles were determined by the parallel hot-wire method, along with the evaluation of the downside surface temperature. Cement-based components reinforced with sisal pulp presented better thermal performance at room temperature (25ºC), while those reinforced with sisal pulp added by polypropylene fibers presented better thermal performance at 60ºC. Non-asbestos cement tiles provided more efficient protection against radiation than asbestos corrugated sheets.
Resumo:
O presente estudo teve como objetivo descrever os achados audiológicos e genéticos de nove membros de uma família brasileira que apresenta a mutação no DNA mitocondrial. Todos os nove membros realizaram estudo genético, avaliação foniátrica e audiológica (audiometria tonal e logoaudiometria). O estudo genético revelou a presença de mutação mitocondrial A1555G no gene 12S rRNA (MT-RNR-1) do DNA mitocondrial em todos os sujeitos. Oito sujeitos apresentaram deficiência auditiva e somente um apresentou limiares auditivos normais até o término da realização do estudo. Os resultados audiológicos apontaram para perdas auditivas bilaterais, com prevalência das simétricas, de configurações e graus variados (de moderado a profundo) e pós-linguais. Progressão da perda auditiva foi observada em dois irmãos afetados. Não foi possível afirmar a época do início da perda auditiva por falta de informação dos sujeitos, no entanto, observou-se manifestação da perda em crianças e adultos. As mutações no DNA mitocondrial representam uma causa importante de perda auditiva, sendo imprescindível a realização do diagnóstico etiopatológico, a fim de retardar o início ou evitar a progressão da surdez.
Resumo:
We studied the ecology and natural history of the globally threatened and poorly known Akodon lindberghi Hershkovitz, 1990 in Parque Nacional da Serra da Canastra (PNSC) and Juiz de Fora (JF), southeastern Brazil. From November 1998 to September 2001 a total of 131 individuals were captured in wire-cage live-traps and 52 by pitfalls traps. They were all marked and released at the site. The largest abundances were registered during the dry season, and most of the captures occurred in open habitats. The mean body mass of the two populations was significantly different (18.1 g at PNSC versus 13.1 g at JF; H = 46.2678, g.l.=2, p<0.001). In PNSC, individuals were reproductively active from August to February, and juveniles were present from May to August. The results suggest that the changes in vegetation structure caused by deforestation and intensive agricultural activities could increase the predation rate, affecting the mean body mass of the population.
Resumo:
The neurohistologic observations were performed using the specimens prepared by Winkelmann and Schmitt silver impregnation method. The tissues were fixed in 10% formalin solution and sections of 40µm thickness were obtained by Leica Cryostat at -30ºC. The sections of dorsal mucosa of White-lipped peccary tongue showed numerous filliform and fungiform papillae, and two vallate papillae on the caudal part. The epithelial layer revealed queratinized epithelial cells and the connective tissue papillae of different sizes and shapes. Thick nerve fiber bundles are noted into the subepithelial connective tissue of the papillae. The connective tissue of fungiform and vallate papillae contained numerous sensitive nerves fibers bundles forming a complex nerve plexus.
Resumo:
O objetivo deste trabalho foi medir curvas de sensibilidade ao contraste de 10 crianças ouvintes e de 10 crianças com surdez pré-lingual, de 7 a 12 anos, utilizando frequências radiais circularmente concêntricas (FSCr) de 0,25-2,0 cpg em níveis baixos de luminância (0,7 cd/m²). Todos os participantes apresentavam acuidade visual normal e estavam livres de doenças oculares identificáveis. A FSCr foi medida com o método psicofísico da escolha forçada. Os resultados mostraram sensibilidade máxima na faixa de frequência radial de 0,25 cpg para os dois grupos. Os resultados mostraram ainda diferenças significantes entre as curvas de FSCr de crianças ouvintes e de crianças com surdez pré-lingual. Isto é, as crianças ouvintes precisaram de menos contraste do que as crianças surdas para detectar as frequências radiais. Esses resultados sugerem que, em níveis baixos de luminância, a FSCr das crianças ouvintes foi melhor do que a das crianças com surdez pré-lingual.
Resumo:
OBJETIVO: apresentar o perfil de casos notificados de violência física contra menores de 15 anos em Londrina, Paraná, no ano de 2006. MÉTODO: Estudo transversal, com coleta retrospectiva nos prontuários dos Conselhos Tutelares e serviços de atendimento do município. Os dados foram processados e tabulados pelo programa Epi Info. RESULTADOS: Foram estudados 479 casos de violência por força corporal e 9 casos de violência por outros meios (7 por instrumentos, 1 por objeto cortante e 1 por substância corrosiva). Na violência por força corporal, predominaram vítimas do sexo feminino (53,4 por cento ) e maior risco na idade de seis anos (12,2 por 1.000). O pai foi o agressor mais frequente (48,8 por cento ) e o alcoolismo esteve presente em 64,0 por cento dos casos. A violência por instrumentos foi praticada através de cinta (42,9 por cento ), fio (28,6 por cento ), ferro (14,3 por cento ) e instrumento de cozinha (14,3 por cento ), com vítimas do sexo feminino (85,7 por cento ), na faixa etária de doze anos (33,3 por cento ), sendo o pai (71,4 por cento ) e a mãe (28,6 por cento ) os únicos agressores, com o alcoolismo presente em 57,1 por cento destas situações. A vítima de violência por objeto cortante era do sexo masculino, 13 anos e o agressor, desconhecido, tinha de 15 a 19 anos. A violência por substância corrosiva teve como vítima um adolescente de 13 anos, do sexo masculino, cujo agressor foi o pai, sendo o alcoolismo a situação presente. CONCLUSÕES: Os resultados apontam para a importância epidemiológica do abuso físico contra crianças e adolescentes e podem contribuir para a elaboração de estratégias de prevenção e acompanhamento das vítimas
Resumo:
We discuss an approximation for the dynamic charge response of nonlinear spin-1/2 Luttinger liquids in the limit of small momentum. Besides accounting for the broadening of the charge peak due to two-holon excitations, the nonlinearity of the dispersion gives rise to a two-spinon peak, which at zero temperature has an asymmetric line shape. At finite temperature the spin peak is broadened by diffusion. As an application, we discuss the density and temperature dependence of the Coulomb drag resistivity due to long-wavelength scattering between quantum wires.
Resumo:
We investigate entanglement of strongly interacting fermions in spatially inhomogeneous environments. To quantify entanglement in the presence of spatial inhomogeneity, we propose a local-density approximation (LDA) to the entanglement entropy, and a nested LDA scheme to evaluate the entanglement entropy on inhomogeneous density profiles. These ideas are applied to models of electrons in superlattice structures with different modulation patterns, electrons in a metallic wire in the presence of impurities, and phase-separated states in harmonically confined many-fermion systems, such as electrons in quantum dots and atoms in optical traps. We find that the entanglement entropy of inhomogeneous systems is strikingly different from that of homogeneous systems.
Resumo:
We introduce an analytical approximation scheme to diagonalize parabolically confined two-dimensional (2D) electron systems with both the Rashba and Dresselhaus spin-orbit interactions. The starting point of our perturbative expansion is a zeroth-order Hamiltonian for an electron confined in a quantum wire with an effective spin-orbit induced magnetic field along the wire, obtained by properly rotating the usual spin-orbit Hamiltonian. We find that the spin-orbit-related transverse coupling terms can be recast into two parts W and V, which couple crossing and noncrossing adjacent transverse modes, respectively. Interestingly, the zeroth-order Hamiltonian together with W can be solved exactly, as it maps onto the Jaynes-Cummings model of quantum optics. We treat the V coupling by performing a Schrieffer-Wolff transformation. This allows us to obtain an effective Hamiltonian to third order in the coupling strength k(R)l of V, which can be straightforwardly diagonalized via an additional unitary transformation. We also apply our approach to other types of effective parabolic confinement, e. g., 2D electrons in a perpendicular magnetic field. To demonstrate the usefulness of our approximate eigensolutions, we obtain analytical expressions for the nth Landau-level g(n) factors in the presence of both Rashba and Dresselhaus couplings. For small values of the bulk g factors, we find that spin-orbit effects cancel out entirely for particular values of the spin-orbit couplings. By solving simple transcendental equations we also obtain the band minima of a Rashba-coupled quantum wire as a function of an external magnetic field. These can be used to describe Shubnikov-de Haas oscillations. This procedure makes it easier to extract the strength of the spin-orbit interaction in these systems via proper fitting of the data.
Resumo:
Electrodeposition of thin copper layer was carried out on titanium wires in acidic sulphate bath. The influence of titanium surface preparation, cathodic current density, copper sulphate and sulphuric acid concentrations, electrical charge density and stirring of the solution on the adhesion of the electrodeposits was studied using the Taguchi statistical method. A L(16) orthogonal array with the six factors of control at two levels each and three interactions was employed. The analysis of variance of the mean adhesion response and signal-to-noise ratio showed the great influence of cathodic current density on adhesion. on the contrary, the other factors as well as the three investigated interactions revealed low or no significant effect. From this study optimized electrolysis conditions were defined. The copper electrocoating improved the electrical conductivity of the titanium wire. This shows that copper electrocoated titanium wires could be employed for both electrical purpose and mechanical reinforcement in superconducting magnets. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This investigation presents a comprehensive characterization of magnetic and transport properties of an interesting superconducting wire, Nb-Ti -Ta, obtained through the solid-state diffusion between Nb-12 at.% Ta alloy and pure Ti. The physical properties obtained from magnetic and transport measurements related to the microstructure unambiguously confirmed a previous proposition that the superconducting currents flow in the center of the diffusion layer, which has a steep composition variation. The determination of the critical field also confirmed that the flux line core size is not constant, and in addition it was possible to determine that, in the center of the layer, the flux line core is smaller than at the borders. A possible core shape design is proposed. Among the wires studied, the one that presented the best critical current density was achieved for a diffusion layer with a composition of about Nb-32% Ti-10% Ta, obtained with a heat treatment at 700 degrees C during 120 h, in agreement with previous studies. It was determined that this wire has the higher upper critical field, indicating that the optimization of the superconducting behavior is related to an intrinsic property of the ternary alloy.
Resumo:
Nb(3)Sn is one of the most used superconducting materials for applications in high magnetic fields. The improvement of the critical current densities (J(c)) is important, and must be analyzed together with the optimization of the flux pinning acting in the material. For Nb(3)Sn, it is known that the grain boundaries are the most effective pinning centers. However, the introduction of artificial pinning centers (APCs) with different superconducting properties has been proved to be beneficial for J(c). As these APCs are normally in the nanometric-scale, the conventional heat treatment profiles used for Nb(3)Sn wires cannot be directly applied, leading to excessive grain growth and/or increase of the APCs cross sections. In this work, the heat treatment profiles for Nb(3)Sn superconductor wires with Cu(Sn) artificial pinning centers in nanometric-scale were analyzed in an attempt to improve J(c) . It is described a methodology to optimize the heat treatment profiles in respect to diffusion, reaction and formation of the superconducting phases. Microstructural, transport and magnetic characterization were performed in an attempt to find the pinning mechanisms acting in the samples. It was concluded that the maximum current densities were found when normal phases (due to the introduction of the APCs) are acting as main pinning centers in the global behavior of the Nb(3)Sn superconducting wire.
Resumo:
Several high temperature superconductor (HTS) tapes have been developed since the late eighties. Due to the new techniques applied for their production, HTS tapes are becoming feasible and practical for many applications. In this work, we present the test results of five commercial HTS tapes from the BSCCO and YBCO families (short samples of 200 mm). We have measured and analyzed their intrinsic and extrinsic properties and compared their behaviors for fault current limiter (FCL) applications. Electrical measurements were performed to determine the critical current and the n value through the V-I relationship under DC and AC magnetic fields. The resistance per unit length was determined as a function of temperature. The magnetic characteristics were analyzed through susceptibility curves as a function of temperature. As transport current generates a magnetic field surrounding the HTS material, the magnetic measurements indicate the magnetic field supported by the tapes under a peak current 1.5 times higher than the critical current, I(c). By pulsed current tests the recovery time and the energy/volume during a current fault were also analyzed. These results are in agreement with the data found in the literature giving the most appropriate performance conductor for a FCL device (I(peak) = 4 kA) to be used in a 220 V-60 Hz grid.
Resumo:
Since the discovery of Nb(3)Sn superconductors many efforts have been expended to improve the transport properties in these materials. In this work, the heat treatment profiles for Nb(3)Sn superconductor wires with Cu(Sn) artificial pinning centers (APCs) with nanometric-scale sizes were analyzed in an attempt to improve the critical current densities and upper critical magnetic field. The methodology to optimize the heat treatment profiles in respect to the diffusion, reaction and formation of the superconducting phases is described. Microstructural characterization, transport and magnetic measurements were performed in an attempt to relate the microstructure to the pinning mechanisms acting in the samples. It was concluded that the maximum current densities occur due to normal phases (APCs) that act as the main pinning centers in the global behavior of the Nb(3)Sn superconducting wire. The APC technique was shown to be very powerful because it permitted mixing of the pinning mechanism. This achievement was not possible in other studies in Nb(3)Sn wires reported up to now.