862 resultados para Large power system


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Frequency stability has not necessarily been a major problem for the majority of power systems in the past. However, for economic and environmental reasons, power systems are now operated closer to stability limits to maximise the use of the existing networks. Therefore, introduction of new, more efficient and renewable generation technologies, and their effect on the power system must be fully understood if a reliable and secure electricity supply is to be maintained. Using the Northern Ireland, and interconnected Republic of Ireland electricity networks as a case study, this paper addresses some of the issues regarding integration and modelling of combined cycle gas turbines (CCGT), and wind turbine generator (WTG) technology on a small islanded power system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper examines power quality benchmarks in the electricity supply industry (ESI) and impact of standards for the reduction of voltage dip incidents. The paper considers adherence to particular standards and is supported by several case studies from incidents where voltage dips have been detected and assessed by the power systems division of Scottish Power and where improvements have been implemented to help militate against subsequent incidents.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Wind energy has been identified as key to the European Union’s 2050 low carbon economy. However, as wind is a variable resource and stochastic by nature, it is difficult to plan and schedule the power system under varying wind power generation. This paper investigates the impacts of offshore wind power forecast error on the operation and management of a pool-based electricity market in 2050. The impact of the magnitude and variance of the offshore wind power forecast error on system generation costs, emission costs, dispatch-down of wind, number of start-ups and system marginal price is analysed. The main findings of this research are that the magnitude of the offshore wind power forecast error has the largest impact on system generation costs and dispatch-down of wind, but the variance of the offshore wind power forecast error has the biggest impact on emissions costs and system marginal price. Overall offshore wind power forecast error variance results in a system marginal price increase of 9.6% in 2050.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Although pumped hydro storage is seen as a strategic key asset by grid operators, financing it is complicated in new liberalised markets. It could be argued that the optimum generation portfolio is now determined by the economic viability of generators based on a short to medium term return on investment. This has meant that capital intensive projects such as pumped hydro storage are less attractive for wholesale electricity companies because the payback periods are too long. In tandem a significant amount of wind power has entered the generation mix, which has resulted in operating and planning integration issues due to wind's inherent uncertain, varying spatial and temporal nature. These integration issues can be overcome using fast acting gas peaking plant or energy storage. Most analysis of wind power integration using storage to date has used stochastic optimisation for power system balancing or arbitrage modelling to examine techno-economic viability. In this research a deterministic dynamic programming long term generation expansion model is employed to optimise the generation mix, total system costs and total carbon dioxide emissions, and unlike other studies calculates reserve to firm wind power. The key finding of this study is that the incentive to build capital-intensive pumped hydro storage to firm wind power is limited unless exogenous market costs come very strongly into play. Furthermore it was demonstrated that reserve increases with increasing wind power showing the importance of ancillary services in future power systems. © 2014 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we propose a system level design approach considering voltage over-scaling (VOS) that achieves error resiliency using unequal error protection of different computation elements, while incurring minor quality degradation. Depending on user specifications and severity of process variations/channel noise, the degree of VOS in each block of the system is adaptively tuned to ensure minimum system power while providing "just-the-right" amount of quality and robustness. This is achieved, by taking into consideration block level interactions and ensuring that under any change of operating conditions, only the "less-crucial" computations, that contribute less to block/system output quality, are affected. The proposed approach applies unequal error protection to various blocks of a system-logic and memory-and spans multiple layers of design hierarchy-algorithm, architecture and circuit. The design methodology when applied to a multimedia subsystem shows large power benefits ( up to 69% improvement in power consumption) at reasonable image quality while tolerating errors introduced due to VOS, process variations, and channel noise.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a new method for online determination of the Thèvenin equivalent parameters of a power system at a given node using the local PMU measurements at that node. The method takes into account the measurement errors and the changes in the system side. An analysis of the effects of changes in system side is carried out on a simple two-bus system to gain an insight of the effect of system side changes on the estimated Thévenin equivalent parameters. The proposed method uses voltage and current magnitudes as well as active and reactive powers; thus avoiding the effect of phase angle drift of the PMU and the need to synchronize measurements at different instances to the same reference. Applying the method to the IEEE 30-bus test system has shown its ability to correctly determine the Thévenin equivalent even in the presence of measurement errors and/or system side changes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The development of smart grid technologies and appropriate charging strategies are key to accommodating large numbers of Electric Vehicles (EV) charging on the grid. In this paper a general framework is presented for formulating the EV charging optimization problem and three different charging strategies are investigated and compared from the perspective of charging fairness while taking into account power system constraints. Two strategies are based on distributed algorithms, namely, Additive Increase and Multiplicative Decrease (AIMD), and Distributed Price-Feedback (DPF), while the third is an ideal centralized solution used to benchmark performance. The algorithms are evaluated using a simulation of a typical residential low voltage distribution network with 50% EV penetration. © 2013 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

High Voltage Direct Current (HVDC) lines allow large quantities of power to be
transferred between two points in an electrical power system. A Multi-Terminal HVDC (MTDC) grid consists of a meshed network of HVDC lines, and this allows energy reserves to be shared between a number of AC areas in an efficient manner. Secondary Frequency Control (SFC) algorithms return the frequencies in areas connected by AC or DC lines to their original setpoints after Primary Frequency Controllers have been called following a contingency. Where multiple
TSOs are responsible for different parts of a MTDC grid it may not be possible to implement SFC from a centralised location. Thus, in this paper a simple gain based distributed Model Predictive Control strategy is proposed for Secondary Frequency Control of MTDC grids which allows TSOs to cooperatively perform SFC without the need for centralised coordination.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Electric vehicles (EVs) offer great potential to move from fossil fuel dependency in transport once some of the technical barriers related to battery reliability and grid integration are resolved. The European Union has set a target to achieve a 10% reduction in greenhouse gas emissions by 2020 relative to 2005 levels. This target is binding in all the European Union member states. If electric vehicle issues are overcome then the challenge is to use as much renewable energy as possible to achieve this target. In this paper, the impacts of electric vehicle charged in the all-Ireland single wholesale electricity market after the 2020 deadline passes is investigated using a power system dispatch model. For the purpose of this work it is assumed that a 10% electric vehicle target in the Republic of Ireland is not achieved, but instead 8% is reached by 2025 considering the slow market uptake of electric vehicles. Our experimental study shows that the increasing penetration of EVs could contribute to approach the target of the EU and Ireland government on emissions reduction, regardless of different charging scenarios. Furthermore, among various charging scenarios, the off-peak charging is the best approach, contributing 2.07% to the target of 10% reduction of Greenhouse gas emissions by 2025.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Increasing installed capacities of wind power in an effort to achieve sustainable power systems for future generations pose problems for system operators. Volatility in generation volumes due to the adoption of stochastic wind power is increasing. Storage has been shown to act as a buffer for these stochastic energy sources, facilitating the integration of renewable energy into a historically inflexible power system. This paper examines peak and off peak benefits realised by installing a short term discharge storage unit in a system with a high penetration of wind power in 2020. A fully representative unit commitment and economic dispatch model is used to analyse two scenarios, one ‘with storage’ and one ‘without storage’. Key findings of this preliminary study show that wind curtailment can be reduced in the storage scenario, with a larger reduction in peak time ramping of gas generators is realised.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dependency on thermal generation and continued wind power growth in Europe due to renewable energy and greenhouse gas emissions targets has resulted in an interesting set of challenges for power systems. The variability of wind power impacts dispatch and balancing by grid operators, power plant operations by generating companies and market wholesale costs. This paper quantifies the effects of high wind power penetration on power systems with a dependency on gas generation using a realistic unit commitment and economic dispatch model. The test system is analyzed under two scenarios, with and without wind, over one year. The key finding of this preliminary study is that despite increased ramping requirements in the wind scenario, the unit cost of electricity due to sub-optimal operation of gas generators does not show substantial deviation from the no wind scenario.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dynamic economic load dispatch (DELD) is one of the most important steps in power system operation. Various optimisation algorithms for solving the problem have been developed; however, due to the non-convex characteristics and large dimensionality of the problem, it is necessary to explore new methods to further improve the dispatch results and minimise the costs. This article proposes a hybrid differential evolution (DE) algorithm, namely clonal selection-based differential evolution (CSDE), to solve the problem. CSDE is an artificial intelligence technique that can be applied to complex optimisation problems which are for example nonlinear, large scale, non-convex and discontinuous. This hybrid algorithm combines the clonal selection algorithm (CSA) as the local search technique to update the best individual in the population, which enhances the diversity of the solutions and prevents premature convergence in DE. Furthermore, we investigate four mutation operations which are used in CSA as the hyper-mutation operations. Finally, an efficient solution repair method is designed for DELD to satisfy the complicated equality and inequality constraints of the power system to guarantee the feasibility of the solutions. Two benchmark power systems are used to evaluate the performance of the proposed method. The experimental results show that the proposed CSDE/best/1 approach significantly outperforms nine other variants of CSDE and DE, as well as most other published methods, in terms of the quality of the solution and the convergence characteristics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new approach to determine the local boundary of voltage stability region in a cut-set power space (CVSR) is presented. Power flow tracing is first used to determine the generator-load pair most sensitive to each branch in the interface. The generator-load pairs are then used to realize accurate small disturbances by controlling the branch power flow in increasing and decreasing directions to obtain new equilibrium points around the initial equilibrium point. And, continuous power flow is used starting from such new points to get the corresponding critical points around the initial critical point on the CVSR boundary. Then a hyperplane cross the initial critical point can be calculated by solving a set of linear algebraic equations. Finally, the presented method is validated by some systems, including New England 39-bus system, IEEE 118-bus system, and EPRI-1000 bus system. It can be revealed that the method is computationally more efficient and has less approximation error. It provides a useful approach for power system online voltage stability monitoring and assessment. This work is supported by National Natural Science Foundation of China (No. 50707019), Special Fund of the National Basic Research Program of China (No. 2009CB219701), Foundation for the Author of National Excellent Doctoral Dissertation of PR China (No. 200439), Tianjin Municipal Science and Technology Development Program (No. 09JCZDJC25000), National Major Project of Scientific and Technical Supporting Programs of China During the 11th Five-year Plan Period (No. 2006BAJ03A06). ©2009 State Grid Electric Power Research Institute Press.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Synchrophasors have become an important part of the modern power system and numerous applications have been developed covering wide-area monitoring, protection and control. Most applications demand continuous transmission of synchrophasor data across large geographical areas and require an efficient communication framework. IEEE C37.118-2 evolved as one of the most successful synchrophasor communication standards and is widely adopted. However, it lacks a predefined security mechanism and is highly vulnerable to cyber attacks. This paper analyzes different types of cyber attacks on IEEE C37.118-2 communication system and evaluates their possible impact on any developed synchrophasor application. Further, the paper also recommends an efficent security mechanism that can provide strong protection against cyber attacks. Although, IEEE C37.118-2 has been widely adopted, there is no clear understanding of the requirements and limitations. To this aim, the paper also presents detailed performance evaluation of IEEE C37.118-2 implementations which could help determine required resources and network characteristics before designing any synchrophasor application.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper proposes a probabilistic principal component analysis (PCA) approach applied to islanding detection study based on wide area PMU data. The increasing probability of uncontrolled islanding operation, according to many power system operators, is one of the biggest concerns with a large penetration of distributed renewable generation. The traditional islanding detection methods, such as RoCoF and vector shift, are however extremely sensitive and may result in many unwanted trips. The proposed probabilistic PCA aims to improve islanding detection accuracy and reduce the risk of unwanted tripping based on PMU measurements, while addressing a practical issue on missing data. The reliability and accuracy of the proposed probabilistic PCA approach are demonstrated using real data recorded in the UK power system by the OpenPMU project. The results show that the proposed methods can detect islanding accurately, without being falsely triggered by generation trips, even in the presence of missing values.