360 resultados para Kriging disjuntiu


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study subdivides the Weddell Sea, Antarctica, into seafloor regions using multivariate statistical methods. These regions are categories used for comparing, contrasting and quantifying biogeochemical processes and biodiversity between ocean regions geographically but also regions under development within the scope of global change. The division obtained is characterized by the dominating components and interpreted in terms of ruling environmental conditions. The analysis uses 28 environmental variables for the sea surface, 25 variables for the seabed and 9 variables for the analysis between surface and bottom variables. The data were taken during the years 1983-2013. Some data were interpolated. The statistical errors of several interpolation methods (e.g. IDW, Indicator, Ordinary and Co-Kriging) with changing settings have been compared for the identification of the most reasonable method. The multivariate mathematical procedures used are regionalized classification via k means cluster analysis, canonical-correlation analysis and multidimensional scaling. Canonical-correlation analysis identifies the influencing factors in the different parts of the cove. Several methods for the identification of the optimum number of clusters have been tested. For the seabed 8 and 12 clusters were identified as reasonable numbers for clustering the Weddell Sea. For the sea surface the numbers 8 and 13 and for the top/bottom analysis 8 and 3 were identified, respectively. Additionally, the results of 20 clusters are presented for the three alternatives offering the first small scale environmental regionalization of the Weddell Sea. Especially the results of 12 clusters identify marine-influenced regions which can be clearly separated from those determined by the geological catchment area and the ones dominated by river discharge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Energy saving, reduction of greenhouse gasses and increased use of renewables are key policies to achieve the European 2020 targets. In particular, distributed renewable energy sources, integrated with spatial planning, require novel methods to optimise supply and demand. In contrast with large scale wind turbines, small and medium wind turbines (SMWTs) have a less extensive impact on the use of space and the power system, nevertheless, a significant spatial footprint is still present and the need for good spatial planning is a necessity. To optimise the location of SMWTs, detailed knowledge of the spatial distribution of the average wind speed is essential, hence, in this article, wind measurements and roughness maps were used to create a reliable annual mean wind speed map of Flanders at 10 m above the Earth’s surface. Via roughness transformation, the surface wind speed measurements were converted into meso- and macroscale wind data. The data were further processed by using seven different spatial interpolation methods in order to develop regional wind resource maps. Based on statistical analysis, it was found that the transformation into mesoscale wind, in combination with Simple Kriging, was the most adequate method to create reliable maps for decision-making on optimal production sites for SMWTs in Flanders (Belgium).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intertidal flats of the estuarine macro-intertidal Baie des Veys (France) were investigated to identify spatial features of sediment and microphytobenthos (MPB) in April 2003. Gradients occurred within the domain, and patches were identified close to vegetated areas or within the oyster-farming areas where calm physical conditions and biodeposition altered the sediment and MPB landscapes. Spatial patterns of chl a content were explained primarily by the influence of sediment features, while bed elevation and compaction brought only minor insights into MPB distribution regulation. The smaller size of MPB patches compared to silt patches revealed the interplay between physical structure defining the sediment landscape, the biotic patches that they contain, and that median grain-size is the most important parameter in explaining the spatial pattern of MPB. Small-scale temporal dynamics of sediment chl a content and grain-size distribution were surveyed in parallel during 2 periods of 14 d to detect tidal and seasonal variations. Our results showed a weak relationship between mud fraction and MPB biomass in March, and this relationship fully disappeared in July. Tidal exposure was the most important parameter in explaining the summer temporal dynamics of MPB. This study reveals the general importance of bed elevation and tidal exposure in muddy habitats and that silt content was a prime governing physical factor in winter. Biostabilisation processes seemed to behave only as secondary factors that could only amplify the initial silt accumulation in summer rather than primary factors explaining spatial or long-term trends of sediment changes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The long-term adverse effects on health associated with air pollution exposure can be estimated using either cohort or spatio-temporal ecological designs. In a cohort study, the health status of a cohort of people are assessed periodically over a number of years, and then related to estimated ambient pollution concentrations in the cities in which they live. However, such cohort studies are expensive and time consuming to implement, due to the long-term follow up required for the cohort. Therefore, spatio-temporal ecological studies are also being used to estimate the long-term health effects of air pollution as they are easy to implement due to the routine availability of the required data. Spatio-temporal ecological studies estimate the health impact of air pollution by utilising geographical and temporal contrasts in air pollution and disease risk across $n$ contiguous small-areas, such as census tracts or electoral wards, for multiple time periods. The disease data are counts of the numbers of disease cases occurring in each areal unit and time period, and thus Poisson log-linear models are typically used for the analysis. The linear predictor includes pollutant concentrations and known confounders such as socio-economic deprivation. However, as the disease data typically contain residual spatial or spatio-temporal autocorrelation after the covariate effects have been accounted for, these known covariates are augmented by a set of random effects. One key problem in these studies is estimating spatially representative pollution concentrations in each areal which are typically estimated by applying Kriging to data from a sparse monitoring network, or by computing averages over modelled concentrations (grid level) from an atmospheric dispersion model. The aim of this thesis is to investigate the health effects of long-term exposure to Nitrogen Dioxide (NO2) and Particular matter (PM10) in mainland Scotland, UK. In order to have an initial impression about the air pollution health effects in mainland Scotland, chapter 3 presents a standard epidemiological study using a benchmark method. The remaining main chapters (4, 5, 6) cover the main methodological focus in this thesis which has been threefold: (i) how to better estimate pollution by developing a multivariate spatio-temporal fusion model that relates monitored and modelled pollution data over space, time and pollutant; (ii) how to simultaneously estimate the joint effects of multiple pollutants; and (iii) how to allow for the uncertainty in the estimated pollution concentrations when estimating their health effects. Specifically, chapters 4 and 5 are developed to achieve (i), while chapter 6 focuses on (ii) and (iii). In chapter 4, I propose an integrated model for estimating the long-term health effects of NO2, that fuses modelled and measured pollution data to provide improved predictions of areal level pollution concentrations and hence health effects. The air pollution fusion model proposed is a Bayesian space-time linear regression model for relating the measured concentrations to the modelled concentrations for a single pollutant, whilst allowing for additional covariate information such as site type (e.g. roadside, rural, etc) and temperature. However, it is known that some pollutants might be correlated because they may be generated by common processes or be driven by similar factors such as meteorology. The correlation between pollutants can help to predict one pollutant by borrowing strength from the others. Therefore, in chapter 5, I propose a multi-pollutant model which is a multivariate spatio-temporal fusion model that extends the single pollutant model in chapter 4, which relates monitored and modelled pollution data over space, time and pollutant to predict pollution across mainland Scotland. Considering that we are exposed to multiple pollutants simultaneously because the air we breathe contains a complex mixture of particle and gas phase pollutants, the health effects of exposure to multiple pollutants have been investigated in chapter 6. Therefore, this is a natural extension to the single pollutant health effects in chapter 4. Given NO2 and PM10 are highly correlated (multicollinearity issue) in my data, I first propose a temporally-varying linear model to regress one pollutant (e.g. NO2) against another (e.g. PM10) and then use the residuals in the disease model as well as PM10, thus investigating the health effects of exposure to both pollutants simultaneously. Another issue considered in chapter 6 is to allow for the uncertainty in the estimated pollution concentrations when estimating their health effects. There are in total four approaches being developed to adjust the exposure uncertainty. Finally, chapter 7 summarises the work contained within this thesis and discusses the implications for future research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water regimes in the Brazilian Cerrados are sensitive to climatological disturbances and human intervention. The risk that critical water-table levels are exceeded over long periods of time can be estimated by applying stochastic methods in modeling the dynamic relationship between water levels and driving forces such as precipitation and evapotranspiration. In this study, a transfer function-noise model, the so called PIRFICT-model, is applied to estimate the dynamic relationship between water-table depth and precipitation surplus/deficit in a watershed with a groundwater monitoring scheme in the Brazilian Cerrados. Critical limits were defined for a period in the Cerrados agricultural calendar, the end of the rainy season, when extremely shallow levels (< 0.5-m depth) can pose a risk to plant health and machinery before harvesting. By simulating time-series models, the risk of exceeding critical thresholds during a continuous period of time (e.g. 10 days) is described by probability levels. These simulated probabilities were interpolated spatially using universal kriging, incorporating information related to the drainage basin from a digital elevation model. The resulting map reduced model uncertainty. Three areas were defined as presenting potential risk at the end of the rainy season. These areas deserve attention with respect to water-management and land-use planning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho tem por objetivo apresentar uma aplicação de métodos geoestatísticos na elaboração de mapas de risco à saúde pública, por meio da identificação de áreas com maior concentração de metais pesados. Foi escolhido o elemento chumbo (Pb), resultante do transporte aéreo ou do carregamento das partículas causado pela lixiviação do solo, em uma região com grande concentração urbana e industrial na Baixada Santista, São Paulo, Brasil. Elaboraram-se mapas das distribuições espaciais desse elemento por intermédio da krigagem ordinária; posteriormente, utilizando-se a krigagem indicativa, identificaram-se as áreas com valores de contaminação do solo superiores aos níveis máximos aceitáveis pelo órgão de controle ambiental do Estado de São Paulo, originando um mapeamento com áreas com maior probabilidade de risco à saúde pública. Os mapas resultantes mostraram-se ferramentas promissoras para auxiliar a tomada de decisão quanto a questões de políticas públicas relacionadas à saúde e ao planejamento ambiental.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Como herramienta para la identificación de áreas con peligro de incendio se pueden generar mapas a partir de variables que influyen en el comportamiento de estos fenómenos. Los combustibles forestales tienen una influencia directa en el desarrollo y establecimiento de los incendios y son el único componente que puede ser modificado por el hombre. Considerando esto, el presente trabajo se enfocó en la generación de un mapa basado en inventarios de combustibles forestales. La realización de estos inventarios se llevó a cabo mediante la técnica conocida como intersecciones planeares, la información recaudada en campo se aplicó el método Kriging para generar un mapa con la carga de combustible total. Los resultados para el inventario de combustibles se estimaron en un promedio de 37.57 Mg/ha-1. El mapa generado permite identificar áreas con mayor peligro de incendio dentro del área de estudio. La generación de este tipo de información ayuda a la toma de decisiones para la prevención y combate de incendios forestales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Para el estudio de la interpolación multidimensional es recomendable tener conocimientos previos sobre la interpolación en una dimensión para poder comprender con mayor facilidad la interpolación en más dimensiones. La interpolación multivariable o la interpolación espacial es la interpolación sobre funciones de más de una variable, nuestro estudio está enfocado en la interpolación en dos dimensiones, por lo cual se estudiara el método del vecino más cercano, el método bilineal, y el método bicúbico. Además se abordará de manera superficial el estudio de otros métodos como lo son: Las funciones bivariadas, el método de la distancia inversa, el método de Barnes, método de Kriging, entre otros. También se realiza la comparación entre algunos de los métodos mencionados anteriormente, utilizando los programas octave/matlab, para así determinar que método es mejor para interpolar.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The land suitability evaluation is used to establish land zonings for agriculture activities. Geographic information systems (GIS) are useful for integrating different attributes necessaries to define apt and not apt lands. The present study had as main objective to describe procedures to define land suitability using GIS tools, soils maps and data soils profiles data, emphasizing procedures to define soil atributes. The area studied was the watershed of Córrego Espraiado, Ribeirão Preto-SP, located on the recharging area of the Guarani Aquifer, with approximately 4,130 ha and predominance of sugar cane culture. The database project was developed using the GIS Idrisi 32. The land suitability evaluation was done considering the intensive agricultural production system predominant in the watershed, adjusted for the vulnerability of the areas of recharge and for the methodology of GIS tools. Numerical terrain models (NTM) had been constructed for cation exchange capacity, basis saturation, clay content and silt+clay content using kriging (geostatistical interpolator), and for aluminum saturation using the inverse-square-distance. Boolean operations for handling geographic fields (thematic maps and NTM) to produce information plans are described and a land suitability map obtained by GIS tools is presented, indicating that 85% of watershed lands are apt to annual cultures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of Quality of Life (Qol) has been conducted on various scales throughout the years with focus on assessing overall quality of living amongst citizens. The main focus in these studies have been on economic factors, with the purpose of creating a Quality of Life Index (QLI).When it comes down to narrowing the focus to the environment and factors like Urban Green Spaces (UGS) and air quality the topic gets more focused on pointing out how each alternative meets this certain criteria. With the benefits of UGS and a healthy environment in focus a new Environmental Quality of Life Index (EQLI) will be proposed by incorporating Multi Criteria Analysis (MCA) and Geographical Information Systems (GIS). Working with MCA on complex environmental problems and incorporating it with GIS is a challenging but rewarding task, and has proven to be an efficient approach among environmental scientists. Background information on three MCA methods will be shown: Analytical Hierarchy Process (AHP), Regime Analysis and PROMETHEE. A survey based on a previous study conducted on the status of UGS within European cities was sent to 18 municipalities in the study area. The survey consists of evaluating the current status of UGS as well as planning and management of UGS with in municipalities for the purpose of getting criteria material for the selected MCA method. The current situation of UGS is assessed with use of GIS software and change detection is done on a 10 year period using NDVI index for comparison purposes to one of the criteria in the MCA. To add to the criteria, interpolation of nitrogen dioxide levels was performed with ordinary kriging and the results transformed into indicator values. The final outcome is an EQLI map with indicators of environmentally attractive municipalities with ranking based on predefinedMCA criteria using PROMETHEE I pairwise comparison and PROMETHEE II complete ranking of alternatives. The proposed methodology is applied to Lisbon’s Metropolitan Area, Portugal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La presente tesis tiene por objeto generar estrategias para la distribución de usos y asignación de características de ocupación de suelo, este proceso se apoya en análisis geo estadísticos para obtener resultados más ajustados a la realidad y de esta manera comprender la dinámica de los espacios urbanos, las formas de ocupación del espacio por parte de la población, así también las dinámicas que generan ciertos elementos y el impacto en su contexto inmediato. Este estudio inicia con el desarrollo del marco teórico que aborda definiciones e investigaciones referentes a las dinámicas que los usos presentan en una ciudad.Posteriormente se analizan los elementos urbanos relevantes del área de estudio, iniciando con la delimitación y sectorización, los equipamientos, la vialidad, el transporte, las características de ocupación y la normativa vigente; mediante estos diagnósticos se llega a identificar como está conformada el área de estudio.Partiendo de estos diagnósticos se procede a realizar el estudio y análisis sistemático de los usos y la ocupación de suelo urbano, mediante la aplicación de herramientas geo estadísticas como el Kriging y MORAN-LISA. Los resultados obtenidos se representan en un corema, con la finalidad de crear un modelo espacial de análisis, apoyado también de un análisis de diversidad.Finalmente estos resultados generan estrategias apoyadas en datos estadísticos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary: Climate change has a potential to impact rainfall, temperature and air humidity, which have relation to plant evapotranspiration and crop water requirement. The purpose of this research is to assess climate change impacts on irrigation water demand, based on future scenarios derived from the PRECIS (Providing Regional Climates for Impacts Studies), using boundary conditions of the HadCM3 submitted to a dynamic downscaling nested to the Hadley Centre regional circulation model HadRM3P. Monthly time series for average temperature and rainfall were generated for 1961-90 (baseline) and the future (2040). The reference evapotranspiration was estimated using monthly average temperature. Projected climate change impact on irrigation water demand demonstrated to be a result of evapotranspiration and rainfall trend. Impacts were mapped over the target region by using geostatistical methods. An increase of the average crop water needs was estimated to be 18.7% and 22.2% higher for 2040 A2 and B2 scenarios, respectively. Objective ? To analyze the climate change impacts on irrigation water requirements, using downscaling techniques of a climate change model, at the river basin scale. Method: The study area was delimited between 4º39?30? and 5º40?00? South and 37º35?30? and 38º27?00? West. The crop pattern in the target area was characterized, regarding type of irrigated crops, respective areas and cropping schedules, as well as the area and type of irrigation systems adopted. The PRECIS (Providing Regional Climates for Impacts Studies) system (Jones et al., 2004) was used for generating climate predictions for the target area, using the boundary conditions of the Hadley Centre model HadCM3 (Johns et al., 2003). The considered time scale of interest for climate change impacts evaluation was the year of 2040, representing the period of 2025 to 2055. The output data from the climate model was interpolated, considering latitude/longitude, by applying ordinary kriging tools available at a Geographic Information System, in order to produce thematic maps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spatio-temporal modelling is an area of increasing importance in which models and methods have often been developed to deal with specific applications. In this study, a spatio-temporal model was used to estimate daily rainfall data. Rainfall records from several weather stations, obtained from the Agritempo system for two climatic homogeneous zones, were used. Rainfall values obtained for two fixed dates (January 1 and May 1, 2012) using the spatio-temporal model were compared with the geostatisticals techniques of ordinary kriging and ordinary cokriging with altitude as auxiliary variable. The spatio-temporal model was more than 17% better at producing estimates of daily precipitation compared to kriging and cokriging in the first zone and more than 18% in the second zone. The spatio-temporal model proved to be a versatile technique, adapting to different seasons and dates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study is to identify the optimal designs of converging-diverging supersonic and hypersonic nozzles that perform at maximum uniformity of thermodynamic and flow-field properties with respect to their average values at the nozzle exit. Since this is a multi-objective design optimization problem, the design variables used are parameters defining the shape of the nozzle. This work presents how variation of such parameters can influence the nozzle exit flow non-uniformities. A Computational Fluid Dynamics (CFD) software package, ANSYS FLUENT, was used to simulate the compressible, viscous gas flow-field in forty nozzle shapes, including the heat transfer analysis. The results of two turbulence models, k-e and k-ω, were computed and compared. With the analysis results obtained, the Response Surface Methodology (RSM) was applied for the purpose of performing a multi-objective optimization. The optimization was performed with ModeFrontier software package using Kriging and Radial Basis Functions (RBF) response surfaces. Final Pareto optimal nozzle shapes were then analyzed with ANSYS FLUENT to confirm the accuracy of the optimization process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Continuous and reliable monitoring of contaminants in drinking water, which adversely affect human health, is the main goal of the Broward County Well Field Protection Program. In this study the individual monitoring station locations were used in a yearly and quarterly spatiotemporal Ordinary Kriging interpolation to create a raster network of contaminant detections. In the final analysis, the raster spatiotemporal nitrate concentration trends were overlaid with a pollution vulnerability index to determine if the concentrations are influenced by a set of independent variables. The pollution vulnerability factors are depth to water, recharge, aquifer media, soil, impact to vadose zone, and conductivity. The creation of the nitrate raster dataset had an average RMS Standardized error close to 1 at 0.98. The greatest frequency of detections and the highest concentrations are found in the months of April, May, June, July, August, and September. An average of 76.4% of the nitrate intersected with cells of the pollution vulnerability index over 100.