927 resultados para Immunology and Allergy
Resumo:
Paradoxically, while peripheral self-tolerance exists for constitutively presented somatic self Ag, self-peptide recognized in the context of MHC class II has been shown to sensitize T cells for subsequent activation. We have shown that MHC class II(+)CD86(+)CD40(-) DC, which can be generated from bone marrow in the presence of an NF-kappaB inhibitor, and which constitutively populate peripheral tissues and lymphoid organs in naive animals, can induce Ag-specific tolerance. In this study, we show that CD40(-) human monocyte-derived dendritic cells (DC), generated in the presence of an NF-kappaB inhibitor, signal phosphorylation of TCRzeta, but little proliferation or IFN-gamma in vitro. Proliferation is arrested in the G(1)/G(0) phase of the cell cycle. Surprisingly, responding T cells are neither anergic nor regulatory, but are sensitized for subsequent IFN-gamma production. The data indicate that signaling through NF-kappaB determines the capacity of DC to stimulate T cell proliferation. Functionally, NF-kappaB(-)CD40(-)class II+ DC may either tolerize or sensitize T cells. Thus, while CD40(-) DC appear to prime or prepare T cells, the data imply that signals derived from other cells drive the generation either of Ag-specific regulatory or effector cells in vivo.
Resumo:
Complement activation contributes to inflammation and tissue damage in human demyelinating diseases and in rodent models of demyelination. Inhibitors of complement activation ameliorate disease in the rat model antibody-dependent experimental autoimmune encephalomyelitis and rats unable to generate the membrane attack complex of complement develop inflammation without demyelination. The role of the highly active chemotactic and anaphylactic complement-derived peptide C5a in driving inflammation and pathology in rodent models of demyelination has been little explored. Here we have used a small molecule C5a receptor antagonist, AcF-[OPdChaWR], to examine the effects of C5a receptor blockade in rat models of brain inflammation and demyelination. C5a receptor antagonist therapy completely blocked neutrophil response to C5a in vivo but had no effect on clinical disease or resultant pathology in either inflammatory or demyelinating rat models. We conclude that C5a is not required for disease induction or perpetuation in these strongly complement-dependent disease models.
Resumo:
MHC class I molecules generally present peptides of 8-10 aa long, forming an extended coil in the HLA cleft. Although longer peptides can also bind to class I molecules, they tend to bulge from the cleft and it is not known whether the TCR repertoire has sufficient plasticity to recognize these determinants during the antiviral CTL response. In this study, we show that unrelated individuals infected with EBV generate a significant CTL response directed toward an HLA-B*3501-restricted, 11-mer epitope from the BZLF1 Ag. The 11-mer determinant adopts a highly bulged conformation with seven of the peptide side chains being solvent-exposed and available for TCR interaction. Such a complex potentially creates a structural challenge for TCR corecognition of both HLA-B*3501 and the peptide Ag. Surprisingly, unrelated B*3501 donors recognizing the 11-mer use identical or closely related alpha beta TCR sequences that share particular CDR3 motifs. Within the small number of dominant CTL clonotypes observed, each has discrete fine specificity for the exposed-side chain residues of the peptide. The data show that bulged viral peptides are indeed immunogenic but suggest that the highly constrained TCR repertoire reflects a limit to TCR diversity when responding to some unusual MHC peptide ligands.
Resumo:
We previously reported that bacterial products such as LPS and CpG DNA down-modulated cell surface levels of the Colony Stimulating Factor (CSF)-1 receptor (CSF-1R) on primary murine macrophages in an all-or-nothing manner. Here we show that the ability of bacterial products to down-modulate the CSF-IR rendered bone marrow-derived macrophages (BMM) unresponsive to CSF-1 as assessed by Akt and ERK 1/2 phosphorylation. Using toll-like receptor (th-)9 as a model CSF-1-repressed gene, we show that LPS induced tlr9 expression in BMM only when CSF-1 was present, suggesting that LPS relieves CSF-1-mediated inhibition to induce gene expression. Using cDNA microarrays, we identified a cluster of similarly CSF-1 repressed genes in BMM. By real time PCR we confirmed that the expression of a selection of these genes, including integral membrane protein 2B (itm2b), receptor activity-modifying protein 2 (ramp2) and macrophage-specific gene 1 (mpg-1), were repressed by CSF-1 and were induced by LPS only in the presence of CSF-1. This pattern of gene regulation was also apparent in thioglycollate-elicited peritoneal macrophages (TEPM). LPS also counteracted CSF-1 action to induce mRNA expression of a number of transcription factors including interferon consensus sequence binding protein 1 (Icsbp1), suggesting that this mechanism leads to transcriptional reprogramming in macrophages. Since the majority of in vitro studies on macrophage biology do not include CSF-1, these genes represent a set of previously uncharacterised LPS-inducible genes. This study identifies a new mechanism of macrophage activation, in which LPS (and other toll-like receptor agonists) regulate gene expression by switching off the CSF-1R signal. This finding also provides a biological relevance to the well-documented ability of macrophage activators to down-modulate surface expression of the CSF-1R. (C) 2005 Elsevier GmbH. All rights reserved.
Resumo:
An effective immune system requires rapid and appropriate activation of inflammatory mechanisms but equally rapid and effective resolution of the inflammatory state. A review of the canonical host response to gram-negative bacteria, the lipopolysaccharide-Toll-like receptor 4 signaling cascade, highlights the induction of repressors that act at each step of the activation process. These inflammation suppressor genes are characterized by their induction in response to pathogen, typically late in the macrophage activation program, and include an expanding class of dominant-negative proteins derived from alternate splicing of common signaling components. Despite the expanse of anti-inflammatory mechanisms available to an activated macrophage, the frailty of this system is apparent in the large numbers of genes implicated in chronic inflammatory diseases. This apparent lack of redundancy between inflammation suppressor genes is discussed with regard to evolutionary benefits in generating a heterogeneous population of immune cells and consequential robustness in defense against new and evolving pathogens.
Resumo:
Expression of the mouse transcription factor EC (Tfec) is restricted to the myeloid compartment, suggesting a function for Tfec in the development or function of these cells. However, mice lacking Tfec develop normally, indicating a redundant role for Tfec in myeloid cell development. We now report that Tfec is specifically induced in bone marrow-derived macrophages upon stimulation with the Th2 cytokines, IL-4 and IL-13, or LPS. LPS induced a rapid and transient up-regulation of Tfec mRNA expression and promoter activity, which was dependent on a functional NF-kappa B site. IL-4, however, induced a rapid, but long-lasting, increase in Tfec mRNA, which, in contrast to LPS stimulation, also resulted in detectable levels of Tfec protein. IL-4-induced transcription of Tfec was absent in macrophages lacking Stat6, and its promoter depended on two functional Stat6-binding sites. A global comparison of IL-4-induced genes in both wild-type and Tfec mutant macrophages revealed a surprisingly mild phenotype with only a few genes affected by Tfec deficiency. These included the G-CSFR (Csf3r) gene that was strongly up-regulated by IL-4 in wild-type macrophages and, to a lesser extent, in Tfec mutant macrophages. Our study also provides a general definition of the transcriptome in alternatively activated mouse macrophages and identifies a large number of novel genes characterizing this cell type.
Resumo:
Vaccinology is a combinatorial science which studies the diversity of pathogens and the human immune system, and formulations that can modulate immune responses and prevent or cure disease. Huge amounts of data are produced by genomics and proteomics projects and large-scale screening of pathogen-host and antigen-host interactions. Current developments in computational vaccinology mainly support the analysis of antigen processing and presentation and the characterization of targets of immune response. Future development will also include systemic models of vaccine responses. Immunomics, the large-scale screening of immune processes which includes powerful immunoinformatic tools, offers great promise for future translation of basic immunology research advances into successful vaccines.
Resumo:
Secretion of mucins and exudation of plasma are distinct processes of importance to innate immunity and inflammatory disease. Yet, little is known about their relation in human airways. The objective of the present study was to use the human nasal airway to determine mucinous secretion and plasma exudation in response to common challenge agents and mediators. Ten healthy volunteers were subjected to nasal challenge-lavage procedures. Thus, the nasal mucosa was exposed to increasing doses of histamine (40 and 400 mu g ml(-1)), methacholine (12.5 and 25 mg) and capsaicin (30 and 300 ng ml(-1)). Fucose was selected as a global marker of mucinous secretion and alpha(2)-macroglobulin as an index of exudation of bulk plasma. All challenge agents increased the mucosal output of fucose to about the same level (P < 0.01-0.05). Once significant secretion had been induced the subsequently increased dose of the challenge agent, in the case of histamine and methacholine, failed to further increase the response. Only histamine increased the mucosal output of alpha(2)-macroglobulin (P < 0.01). We conclude that prompt but potentially rapidly depleted mucinous secretion is common to different kinds of airway challenges, whereas inflammatory histamine-type mediators are required to produce plasma exudation. Along with the acknowledged secretion of mucins, a practically non-depletable, pluripotent mucosal output of plasma emerges as an important component of the innate immunity of human airways.
Resumo:
Background: The neuropeptide secretoneurin, with potential relevance to leukocyte trafficking, is present in nerves of the nasal mucosa in allergic rhinitis and may be released in response to allergen and histamine exposure. There is no information on the occurrence and mechanisms of release of secretoneurin in healthy human airways. Methods: The presence of secretoneurin in nasal biopsies and its release in response to nasal capsaicin and histamine challenges were examined. Symptoms and lavage fluid levels of fucose were recorded as markers of effects in part produced by neural activity. Bronchial histamine challenges followed by sputum induction and analysis of secretoneurin were also carried out. Results: Nerves displaying secretoneurin immunoreactivity abounded in the nasal mucosa. Nasal capsaicin challenge produced local pain (P < 0.05) and increased the levels of fucose (P < 0.05), but failed to affect the levels of secretoneurin. Nasal histamine challenge produced symptoms (P < 0.05) and increased the mucosal output of secretoneurin (P < 0.05) and fucose (P < 0.05). Bronchial histamine challenge increased the sputum levels of secretoneurin (P < 0.05). Conclusions: We conclude that secretoneurin is present in healthy human airways and that histamine evokes its release in both nasal and bronchial mucosae. The present observations support the possibility that secretoneurin is involved in histamine-dependent responses of the human airway mucosa.
Resumo:
The use of sirolimus as an alternative to calcineurin antagonists has enabled the continuation of immunosuppression in patients with renal impairment with preservation of kidney function. Sirolimus is generally well tolerated, with the main causes of cessation of therapy related to its effect on blood lipid profile as well as leukopenia and thrombocytopenia. We report a case of a debilitating ulcerating maculopapular rash necessitating cessation of the drug in a liver transplantation patient. A 56-year-old Caucasian liver transplantation patient presented with a diffuse, debilitating rash attributed to sirolimus use. This ultimately necessitated cessation of the immunosuppressant with subsequent resolution of her symptoms. From a review of the current literature, this is a highly unusual adverse reaction to sirolimus.
Resumo:
MULTIPRED is a web-based computational system for the prediction of peptide binding to multiple molecules ( proteins) belonging to human leukocyte antigens (HLA) class I A2, A3 and class II DR supertypes. It uses hidden Markov models and artificial neural network methods as predictive engines. A novel data representation method enables MULTIPRED to predict peptides that promiscuously bind multiple HLA alleles within one HLA supertype. Extensive testing was performed for validation of the prediction models. Testing results show that MULTIPRED is both sensitive and specific and it has good predictive ability ( area under the receiver operating characteristic curve A(ROC) > 0.80). MULTIPRED can be used for the mapping of promiscuous T-cell epitopes as well as the regions of high concentration of these targets termed T-cell epitope hotspots. MULTIPRED is available at http:// antigen.i2r.a-star.edu.sg/ multipred/.
Resumo:
Echinacea preparations are widely used herbal medicines for the prevention and treatment of colds and minor infections. There is little evidence for the individual components in Echinacea that contribute to immune regulatory activity. Activity of an ethanolic Echinacea extract and several constituents, including cichoric acid, have been examined using three in vitro measures of macrophage immune function - NF-kappa B, TNF-alpha and nitric oxide (NO). In cultured macrophages, all components except the monoene alkylamide (AA1) decreased lipopolysaccharide (LPS) stimulated NF-kappa B levels. 0.2 mu g/ml cichoric acid and 2.0 mu g/mL Echinacea Premium Liquid (EPL) and EPL alkylamide fraction (EPL AA) were found to significantly decrease TNF-alpha production under LPS stimulated conditions in macrophages. In macrophages, only the alkylamide mixture isolated from the ethanolic Echinacea extract decreased LPS stimulated NO production. In this study, the mixture of alkylamides in the Echinacea ethanolic liquid extract did not respond in the same manner in the assays as the individual alkylamides investigated. While cichoric acid has been shown to affect NF-kappa B, TNF-alpha and NO levels, it is unlikely to be relevant in the Echinacea alterations of the immune response in vivo due to its nonbioavailability - i.e. no demonstrated absorption across the intestinal barrier and no detectable levels in plasma. These results demonstrate that Echinacea is an effective modulator of macrophage immune responses in vitro.