992 resultados para INORGANIC PARTICLES
Resumo:
Layered LiNi1/3Co1/3Mn1/3O2, which is isostructural with LiCoO2, is considered as a potential cathode material for Li-ion batteries. Submicrometer sized porous particles are useful for high discharge rates. The present work involves a synthesis of submicrometer sized porous particles of LiNi1/3Co1/3Mn1/3O2 using a triblock copolymer as a soft template. The precursor obtained from the reaction is heated at different temperatures between 600 and 900 degrees C for 6 h to get the final product samples. The compound attains increased crystallinity with an increase in the temperature of preparation. However, there is a decrease in the surface area and also in the porosity of the sample. Nevertheless, the LiNi1/3Co1/3Mn1/3O2 sample prepared at 900 degrees C exhibits a high rate capability and stable capacity retention on cycling. The electrochemical performance of LiNi1/3Co1/3Mn1/3O2 prepared in the absence of the polymer template is inferior to that of the sample prepared in the presence of the polymer template. (C) 2010 The Electrochemical Society. [DOI: 10.1149/1.3364944] All rights reserved.
Resumo:
Graphite particles are exfoliated and subsequently functionalized with toluidine blue. The resulting covalently modified graphite particles are restacked without any binder to form a surface-renewable, bulk-modified electrode. Electrocatalytic oxidation of NADH and its application in the amperometric biosensing of ethanol using alcohol dehydrogenase enzyme have been demonstrated with this material.
Resumo:
We report a simple modified polymeric precursor route for the synthesis of highly crystalline and homogenous nanoparticles of lanthanum calcium manganese oxide (LCMO). The LCMO phase formation was studied by thermal analysis, x-ray powder diffraction, and infrared spectroscopy at different stages of heating. These nanocrystallites (average particle size of 30 nm) possess ferromagnetic-paramagnetic transition temperature (T-c) of 300 K, nearly 50 K higher than that of a single crystal. The Rietveld analysis of the powder x-ray diffraction data of the nanopowders reveals significant lattice contraction and reduction in unit cell anisotropy-these structural changes are correlated to the enhancement in T-c.
Resumo:
Tribology of a well known solid lubricant molybdenum disulphide is studied here in water and oil medium, over a large range of contact dimensions. Lateral force microscopy is used to identify the deformation modes, intra-crystalline slip, plastic grooving, fragmentation and fracture, of single particles The medium and agglomeration were found to dictate the deformation mode Steel on steel tribology lubricated by suspensions of these particles in liquid media was conducted over a range of contact pressure and sliding velocity. A scrutiny of the frictional data with the aid of Raman spectroscopy to identify the transfer film, suggested that the particle size, as it is at contact, is an important tribological parameter Ultrasonication of the suspension and dispersion of the particle by surfactants were used to control the apriori particle size fed into the suspension.Correspondence of friction data of the gently sonicated suspension with that of the ultrasonicated suspension with dispersants indicated the importance of liquid ingestion by these particles as it controls their mode of deformation and consequent tribology. (C) 2010 Elsevier B V All rights reserved.
Resumo:
Thermal reactivities of ammonium perchlorate (AP) pressed at 1500 kg cm–2 for various dwell times ranging from 0 to 45 min have been investigated. Reactivity of AP is observed to (a) increase with increase of dwell time up to 15 min and (b) decrease for the compacts obtained at higher dwell times. X-ray diffraction profiles of the compacts indicated a broadening up to 15 min dwell time and a narrowing thereafter. The increase in the reactivity has been attributed to the increase in the number of gross imperfections and plastic deformation of particles. The decrease in the reactivity is explained in terms of recrystallization after plastic deformation. Local heating is shown to exist during compaction though its macroscopic effect is insignificant during compaction of AP.
Resumo:
The combustion technique produces ionically dispersed Ag on a nano-crystalline CeO2 surface. The catalysts thus produced were characterized by X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy. Catalytic properties towards NO reduction, CO and hydrocarbon oxidation have been investigated using the temperature programmed reaction technique in a packed bed tubular reactor. These results are compared with alpha-Al2O3 supported finely divided Ag metal particles synthesized by the same method. Both oxidation and reduction reactions over Ag/CeO2 have been observed to occur at lower temperatures compared to Ag/Al2O3. The rate and turnover frequency of the NO+CO reaction over 1% Ag/CeO2 are 56.3 mu mol g(-1) s(-1) and 0.97 s(-1) at 225 degrees C respectively. Activation energy (E-a) values are 71 and 67 kJ mol(-1) for CO+O-2 and NO+CO reactions, respectively, over 1% Ag/CeO2 catalyst.
Resumo:
Molybdenum-doped TiO2 organic-inorganic hybrid nanoparticles were synthesized under mild hydrothermal conditions by in situ surface modification using n-butylamine. This was carried out at 150 degrees C at autogeneous pressure over 18 h. n-Butylamine was selected as a surfactant since it produced nanoparticles of the desired size and shape. The products were characterized using powder X-ray diffraction, Fourier transform infrared spectrometry, dynamic light-scattering spectroscopy, UV-Vis spectroscopy and transmission electron microscopy. Chemical oxygen demand was estimated in order to determine the photodegradation efficiency of the molybdenum-doped TiO2 hybrid nanoparticles in the treatment of pharmaceutical effluents. It was found that molybdenum-doped TiO2 hybrid nanoparticles showed higher photocatalytic efficiency than untreated TiO2 nanoparticles.
Resumo:
The oxidative metabolic potential of Setaria digitata, a filarial parasite found in the intraperitoneal cavity of cattle, was investigated. These worms showed active wriggling movements which were not affected by respiratory poisons such as cyanide, rotenone and malonate. They also possessed cyanide-insensitive and glucose-independent oxygen consumption pathways. By differential centrifugation of sucrose homogenates, a fraction containing mitochondria-like particles was obtained in which the activity of the marker enzyme, succinate dehydrogenase, was recovered. This fraction catalysed succinate- and NADH-dependent reduction of both cytochrome c and dyes. Oxygen uptake found with succinate, NADH and ascorbate as substrates was not sensitive to cyanide. Cytochromes could not be detected in either this fraction or homogenates of the worms. H2O2 generation with a number of substrates and lipid peroxidation by measuring malondialdehyde formed as well as by accompanying oxygen uptake were demonstrated in the mitochondria-like particles. A lipid quinone, possibly with a short side chain and related to ubiquinone, was detected in the worms. The results suggested the existence of two cyanide-insensitive oxygen-consuming reactions in Setaria: one respiratory substrate-independent lipid peroxidation, and a second substrate-dependent reaction that requires an auto-oxidizable quinone but not a cytochrome system.
Resumo:
Colloids of palladium nanoparticles have been prepared by the solvated metal atom dispersion (SMAD) method. The as-prepared Pd colloid consists of particles with an average diameter of 2.8 +/- 0.1 nm. Digestive ripening of the as-prepared Pd colloid, a process involving refluxing the as-prepared colloid at or near the boiling point of the solvent in the presence of a passivating agent, dodecanethiol resulted in a previously reported Pd-thiolate cluster, Pd(SC12H25)(2)](6) but did not render the expected narrowing down of the particle size distribution. Solventless thermolysis of the Pd-thiolate complex resulted in various Pd systems such as Pd(0), PdS, and Pd@PdO core-shell nanoparticles thus demonstrating its versatility. These I'd nanostructures have been characterized using high-resolution electron microscopy and powder X-ray diffraction methods. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The discovery of graphene has aroused great interest in the properties and phenomena exhibited by two-dimensional inorganic materials, especially when they comprise only a single, two or a few layers. Graphene-like MoS2 and WS2 have been prepared by chemical methods, and the materials have been characterized by electron microscopy, atomic force microscopy (AFM) and other methods. Boron nitride analogues of graphene have been obtained by a simple chemical procedure starting with boric acid and urea and have been characterized by various techniques that include surface area measurements. A new layered material with the composition BCN possessing a few layers and a large surface area discovered recently exhibits a large uptake of CO2.
Resumo:
The authors study the trajectories of charged particles in Ernst's space-time representing a static black hole immersed in a magnetic field. They find bound orbits always exist for realistic magnetic field strengths. A similar investigation is carried out for the case of Melvin's magnetic universe and for a corresponding test field superposed on a flat space-time.
Resumo:
A hypomonotectic alloy of Al-4.5wt%Cd has been manufactured by melt spinning and the resulting microstructure examined by transmission electron microscopy. As-melt spun hypomonotectic Al-4.5wt%Cd consists of a homogeneous distribution of faceted 5 to 120 nm diameter cadmium particles embedded in a matrix of aluminium, formed during the monotectic solidification reaction. The cadmium particles exhibit an orientation relationship with the aluminium matrix of {111}Al//{0001}Cd and lang110rangAlAl//lang11¯20> Cd, with four cadmium particle variants depending upon which of the four {111}Al planes is parallel to {0001}Cd. The cadmium particles exibit a distorted cuboctahedral shape, bounded by six curved {100}Al//{20¯23}Cd facets, six curved {111}Al/{40¯43}Cd facets and two flat {111}Al//{0001}Cd facets. The as-melt spun cadmium particle shape is metastable and the cadmium particles equilibrate during heat treatment below the cadmium melting point, becoming elongated to increase the surface area and decrease the separation of the {111}Al//{0001}Cd facets. The equilibrium cadmium particle shape and, therefore, the anisotropy of solid aluminium-solid cadmium and solid aluminium -liquid cadmium surface energies have been monitored by in situ heating in the transmission electron microscope over the temperature range between room temperature and 420 °C. The anisotropy of solid aluminium-solid cadmium surface energy is constant between room temperature and the cadmium melting point, with the {100}Al//{20¯23}Cd surface energy on average 40% greater than the {111}Al//{0001}Cd surface energy, and 10% greater than the {111}Al//{40¯43Cd surface energy. When the cadmium particles melt at temperatures above 321 °C, the {100}Al//{20¯23}Cd facets disappear and the {111}Al//{40¯43}Cd and {111}A1//{0001}Cd surface energies become equal. The {111}Al facets do not disappear when the cadmium particles melt, and the anisotropy of solid aluminium-liquid cadmium surface energy decreases gradually with increasing temperature above the cadmium melting point. The kinetics of cadmium solidification have been examined by heating and cooling experiments in a differential scanning calorimeter over a range of heating and cooling rates. Cadmium particle solidification is nucleated catalytically by the surrounding aluminium matrix on the {111}Al faceted surfaces, with an undercooling of 56 K and a contact angle of 42 °. The nucleation kinetics of cadmium particle solidification are in good agreement with the hemispherical cap model of heterogeneous nucleation.
Resumo:
In remote-sensing studies, particles that are comparable to the wavelength exhibit characteristic features in electromagnetic scattering, especially in the degree of linear polarization. These features vary with the physical properties of the particles, such as shape, size, refractive index, and orientation. In the thesis, the direct problem of computing the unknown scattered quantities using the known properties of the particles and the incident radiation is solved at both optical and radar spectral regions in a unique way. The internal electromagnetic fields of wavelength-scale particles are analyzed by using both novel and established methods to show how the internal fields are related to the scattered fields in the far zone. This is achieved by using the tools and methods that were developed specifically to reveal the internal field structure of particles and to study the mechanisms that relate the structure to the scattering characteristics of those particles. It is shown that, for spherical particles, the internal field is a combination of a forward propagating wave with the apparent wavelength determined by the refractive index of the particle, and a standing wave pattern with the apparent wavelength the same as for the incident wave. Due to the surface curvature and dielectric nature of the particle, the incident wave front undergoes a phase shift, and the resulting internal wave is focused mostly at the forward part of the particle similar to an optical lens. This focusing is also seen for irregular particles. It is concluded that, for both spherical and nonspherical particles, the interference at the far field between the partial waves that originate from these concentrated areas in the particle interior, is responsible for the specific polarization features that are common for wavelength-scale particles, such as negative values and local extrema in the degree of linear polarization, asymmetry of the phase function, and enhancement of intensity near the backscattering direction. The papers presented in this thesis solve the direct problem for particles with both simple and irregular shapes to demonstrate that these interference mechanisms are common for all dielectric wavelength-scale particles. Furthermore, it is shown that these mechanisms can be applied to both regolith particles in the optical wavelengths and hydrometeors at microwave frequencies. An advantage from this kind of study is that it does not matter whether the observation is active (e.g., polarimetric radar) or passive (e.g., optical telescope). In both cases, the internal field is computed for two mutually perpendicular incident polarizations, so that the polarization characteristics can then be analyzed according to the relation between these fields and the scattered far field.
Resumo:
Spherical and rod like nanocrystalline Nd2O3 phosphors have been prepared by solution combustion and hydrothermal methods respectively The Powder X-ray diffraction (PXRD) results confirm that hexagonal A-type Nd2O3 has been obtained with calcination at 900 C for 3 h and the lattice parameters have been evaluated by Rietveld refinement Surface morphology of Nd2O3 phosphors show the formation of nanorods in hydrothermal synthesis whereas spherical particles in combustion method TEM results also confirm the same Raman studies show major peaks which are assigned to F-g and combination of A(g) + E-g modes The PL spectrum shows a series of emission bands at similar to 326-373 nm (UV) 421-485 nm (blue) 529-542 nm (green) and 622 nm (red) The UV blue green and red emission in the PL spectrum indicates that Nd2O3 nanocrystals are promising for high performance materials and white light emitting diodes (LEDs) (C) 2010 Elsevier B V All rights reserved