691 resultados para INDIUM NITRIDE
Resumo:
Results on thermal and optical characterization of new lanthanide containing fluoroindate glasses in the system InF3-BaF2-In(PO3)3 are presented. Good optical quality and very stable glasses presenting up to 5 mm in thickness could be prepared in this system. Thermal analysis, Raman scattering and Eu3+ luminescence were the techniques utilized. A novel method for In(PO3)3 synthesis is proposed and the dependence of physical properties and structural features on the polyphosphate content is stressed. © 1998 Elsevier Science S.A.
Resumo:
The viscosity of two fluoroindate glasses was measured as a function of temperature in the range of 310 °C - 362 °C. In such interval, the viscosity values were found to be similar to those reported for fluorozirconate glasses. The log η - 1/T plots had an unexpected behavior: two viscosity regions that seem to obey Arrhenius equation were identified and the activation energy for viscous flow (EA) for the region near Tg is smaller than the value found above the transition range. This behavior is probably due to structural changes occurred around Tg. The low values of the activation energy for viscous flow obtained for the indium fluoride-based glasses studied, suggest a good resistance against the devitrification process, what can make them suitable for fiber preparation.
Resumo:
Undoped and indium-doped Zinc oxide (ZnO) solid films were deposited by the pyrosol process at 450°C on glass substrates from solutions where In/Zn ratio was 2, 5, and 10 at.%. Electrical measurements performed at room temperature show that the addition of indium changes the resistance of the films. The resistivities of doped films are less than non-doped ZnO films by one to two orders of magnitude depending on the dopant concentration in the solution. Preferential orientation of the films with the c-axis perpendicular to the substrate was detected by X-ray diffraction and polarized extended X-ray absorption fine structures measurements at the Zn K edge. This orientation depends on the indium concentration in the starting solution. The most textured films were obtained for solutions where In/Zn ratio was 2 and 5 at.%. When In/Zn = 10 at.%, the films had a nearly random orientation of crystallites. Evidence of the incorporation of indium in the ZnO lattice was obtained from extended X-ray absorption fine structures at the In and Zn K edges. The structural analysis of the least resistive film (Zn/In = 5 at.%) shows that In substitutes Zn in the wurtzite structure. © 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The kinetics of crystallization in an indium fluoride-based glass was studied by a non-isothermal method using differential scanning calorimetry. The experiments led to an Avrami's exponent of 4.6 for solid glass and 2.2 for a powdered sample. The apparent activation energy for crystallization was found to be 130 kJ/mol for solid glass and 354 kJ/mol for the powder. These results express the profound effect of glass particle size on those kinetic parameters, as different crystallization mechanisms take place during sample heating.
Resumo:
The behavior of the minimum quantity lubricant (MQL) technique was analyzed under different lubricating and cooling conditions when grinding ABNT 4340 steel. The comparative analysis of the residual stress values showed that residual compressive stresses were obtained under all the lubrication/cooling conditions and types of abrasive tools employed. The highest residual compressive stress obtained with the aluminum oxide grinding wheel with MQL under the condition of V= 30m/s for air and V= 40ml/h for lubricant was -376MPa against the -160MPa attained with conventional cooling, representing a 135% increase in residual compressive stress. The results show that method and quantity of lubricant and cooling are factors that influence the grinding process.
Resumo:
Samples with a composition of 40InF 3-20ZnF 2-5MCl- xBaF 2-ySrF 2, where M=Na, Li and x+y=35 mol%, were prepared. The thermal properties related to the Ba/Sr ratio and to the remaining chlorine content in the glasses were studied. Thermal stability is improved with the addition of chlorine. However, chlorine concentration is regulated by the sublimation of indium fluorides which takes place at about 600°C. Indium fluorides arc formed during glass fusion. The mechanisms of chlorine sublimation were studied. © 2005 Akadémiai Kiadó, Budapest.
Resumo:
Vertical and in-plane electrical transport in InAs/InP semiconductors wires and dots have been investigated by conductive atomic force microscopy (C-AFM) and electrical measurements in processed devices. Localized I-V spectroscopy and spatially resolved current images (at constant bias), carried out using C-AFM in a controlled atmosphere at room temperature, show different conductances and threshold voltages for current onset on the two types of nanostructures. The processed devices were used in order to access the in-plane conductance of an assembly with a reduced number of nanostructures. On these devices, signature of two-level random telegraph noise (RTN) in the current behavior with time at constant bias is observed. These levels for electrical current can be associated to electrons removed from the wetting layer and trapped in dots and/or wires. A crossover from conduction through the continuum, associated to the wetting layer, to hopping within the nanostructures is observed with increasing temperature. This transport regime transition is confirmed by a temperature-voltage phase diagram. © 2005 Materials Research Society.
Resumo:
We investigate electrical properties of InAs/InP semiconductor nanostructures by conductive atomic force microscopy (C-AFM) and current measurements at low temperatures in processed devices. Different conductances and threshold voltages for current onset were observed for each type of nanostructure. In particular, the extremity of the wire could be compared to a dot with similar dimensions. The processed devices were used in order to access the in-plane conductance of an assembly of a reduced number of nanostructures. Here, fluctuations on I-V curves at low temperatures (<40 K) were observed. At these low temperatures and for a suitable range of applied voltages, random telegraph noise (RTN) in the current was observed for devices with dots. These fluctuations can be associated to electrons trapped in dots, as suggested by numerical simulations. A crossover from a semiconductor-like to a metallic transport behavior is also observed for similar parameters. © 2006 WILEY-VCH Verlag GmbH & Co. KGaA.
Resumo:
The crystallization of fluoroindate glasses doped with Gd3+, Mn2+ and Cu2+ heat treated at different temperatures, ranging from the glass transition temperature (Tg) to the crystallization temperature (Tc), are investigated by electron paramagnetic resonance (EPR) and 19F nuclear magnetic resonance (NMR). The EPR spectra indicate that the Cu2+ ions in the glass are located in axially distorted octahedral sites. In the crystallized glass, the g-values agreed with those reported for Ba2ZnF6, which correspond to Cu2+ in a tetragonal compressed F- octahedron and to Cu2+ on interstitial sites with a square-planar F- co-ordination. The EPR spectra of the Mn2+ doped glasses exhibit a sextet structure due to the Mn2+ hyperfine interaction. These spectra suggest a highly ordered environment for the Mn2+ ions (close to octahedral symmetry) in the glass. The EPR spectra of the recrystallized sample exhibit resonances at the same position, suggesting that the Mn2+ ions are located in sites of highly symmetric crystalline field. The increase of the line intensity of the sextet and the decrease of the background line in the thermal treated samples suggest that the Mn2+ ions move to the highly ordered sites which contribute to the sextet structure. The EPR spectra of the Gd3+ doped glasses exhibit the typical U-spectrum of a s-state ion in a low symmetry site in disordered systems. The EPR of the crystallized glasses, in contrast, have shown a strong resonance in g ≈ 2.0, suggesting Gd3+ ions in environment close to cubic symmetry. The 19F NMR spin-lattice relaxation rates were also strongly influenced by the crystallization process that takes over in samples annealed above Tc. For the glass samples (doped or undoped) the 19F magnetization recoveries were found to be adjusted by an exponential function and the spin-lattice relaxation was characterized by a single relaxation time. In contrast, for the samples treated above Tc, the 19F magnetization-recovery becomes non-exponential. A remarkable feature of our results is that the changes in the Cu2+, Mn2+, Gd3+ EPR spectra and NMR relaxation, are always observed for the samples annealed above Tc. © 2006 Elsevier B.V. All rights reserved.
Resumo:
We investigate the formation of compositional modulation and atomic ordering in InGaP films. Such bulk properties - as well as surface morphologies - present a strong dependence on growth parameters, mainly the V/III ratio. Our results indicate the importance of surface diffusion and, particularly, surface reconstruction for these processes. Most importantly from the application point of view, we show that the compositional modulation is not necessarily coupled to the surface instabilities, so that smooth InGaP films with periodic compositional variation could be obtained. This opens a new route for the generation of templates for quantum dot positioning and three-dimensional arrays of nanostructures. © 2007 American Institute of Physics.
Resumo:
The authors have investigated strain relaxation in InAsInGaAsInP nanowires (NW's). Transmission electron microscopy images show an additional stress field attributed to compositional modulation in the ternary layer, which disrupts NW formation and drives Ga interdiffusion into InAs, according to grazing incidence x-Ray diffraction under anomalous scattering conditions. The strain profile along the NW, however, is not significantly affected when interdiffusion is considered. Results show that the InAs NW energetic stability is preserved with the introduction of ternary buffer layer in the structure. © 2007 American Institute of Physics.
Resumo:
Grinding - the final machining process of a workpiece - requires large amounts of cutting fluids for the lubrication, cooling and removal of chips. These fluids are highly aggressive to the environment. With the technological advances of recent years, the worldwide trend is to produce increasingly sophisticated components with very strict geometric and dimensional tolerances, good surface finish, at low costs, and particularly without damaging the environment. The latter requirement can be achieved by recycling cutting fluids, which is a costly solution, or by drastically reducing the amount of cutting fluids employed in the grinding process. This alternative was investigated here by varying the plunge velocity in the plunge cylindrical grinding of ABNT D6 steel, rationalizing the application of two cutting fluids and using a superabrasive CBN (cubic boron nitride) grinding wheel with vitrified binder to evaluate the output parameters of tangential cutting force, acoustic emission, roughness, roundness, tool wear, residual stress and surface integrity, using scanning electron microscopy (SEM) to examine the test specimens. The performance of the cutting fluid, grinding wheel and plunge velocity were analyzed to identify the best machining conditions which allowed for a reduction of the cutting fluid volume, reducing the machining time without impairing the geometric and dimensional parameters, and the surface finish and integrity of the machined components.
Resumo:
The α-SiAlON ceramic cutting tool insert is developed. Silicon nitride and additives powders are pressed and sintered in the form of cutting tool inserts at temperature of 1900 °C. The physics and mechanical properties of the inserts like green density, weight loss, relative density, hardness and fracture toughness are evaluated. Machining studies are conducted on grey cast iron workpiece to evaluate the performance of α-SiAlON ceramic cutting tool. In the paper the cutting tool used in higher speed showed an improvement in the tribological interaction between the cutting tools and the grey cast iron workpiece resulted in a significant reduction of flank wear and roughness, because of better accommodation and the presence of the graphite in gray cast iron. The above results are discussed in terms of their affect at machining parameters on gray cast iron.
Turning of compacted graphite iron using commercial tiN coated Si 3N4 under dry machining conditions
Resumo:
Due to their high hardness and wear resistance Si3N4 based ceramics are one of the most suitable cutting tool materials for machining hardened materials. Therefore, their high degree of brittleness usually leads to inconsistent results and sudden catastrophic failures. Improvement of the functional properties these tools and reduction of the ecological threats may be accomplished by employing the technology of putting down hard coatings on tools in the state-of-the-art PVD processes, mostly by improvement of the tribological contact conditions in the cutting zone and by eliminating the cutting fluids. However in this paper was used a Si3N4 based cutting tool commercial with a layer TiN coating. In this investigation, the performance of TiN coating was assessed on turning used to machine an automotive grade compacted graphite iron. As part of the study were used to characterise the performance of cutting tool, flank wear, temperature and roughness. The results showed that the layer TiN coating failed to dry compacted graphite iron under aggressive machining conditions. However, using the measurement of flank wear technique, the average tool life of was increased by VC=160 m/min.The latter was also observed using a toolmakers microscope and scanning electron microscopy (SEM).
Resumo:
Silicon nitride cutting tools have been used successfully for machining hard materials, like: cast irons, nickel based alloys, etc. However these cutting tools with diamond coating present little information on dry turning operations of gray cast iron. In the present work, Si3N4 square inserts was developed, characterized and subsequently coated with diamond for dry machining operations on gray cast iron. All experiments were conducted with replica. It was used a 1500, 3000, 4500 m cutting length, feed rate of 0.33 mm/rev and keeping the depth of cut constant and equal to 1 mm. The results show that wear in the tool tips of the Si3N4 inserts, in all cutting conditions, was caused by both mechanical and chemical processes. To understand the tool wear mechanisms, a morphological analysis of the inserts, after experiments, has been performed by SEM and optical microscopy. Diamond coated PVD inserts showed to be capable to reach large cutting lengths when machining gray cast iron. © (2010) Trans Tech Publications.