979 resultados para Hysteresis of Suction
Resumo:
The BBT films were prepared by a spin-coating process from the polymeric precursor method (Pechini process). In order to study the influence of the temperature on the BBT microstructure and electrical properties, the films were deposited on platinum coated silicon substrates and annealed from 700degreesC to 800degreesC for 2 hours in oxygen atmosphere. The crystallinity of the films was examined by X-ray diffraction while the surface morphology was analysed by atomic force microscope. The dielectric properties and dissipation factor of BaBi2Ta2O9 films at 1 MHz were observed. The polarization-electric field hysteresis loops revealed the ferroelectric characteristics of BaBi2Ta2O9 thin films.
Resumo:
Highly (100) oriented Pb0.8Ba0.2TiO3/LaNiO3 structures were grown on LaAlO3(100) substrates by using a wet, soft chemical method and crystallized by the microwave oven technique. The Au/PBT/LaNiO3/LaAlO3 capacitor shows a hysteresis loop with remnant polarization, P-r, of 15 muC/cm(2), and coercive field, E-c, of 47 kV/cm at an applied voltage of 3 V, along with a dielectric constant over 1800. Atomic force microscopy showed that Pb0.8Ba0.2TiO3 is composed of large grains about 300 nm. The experimental results demonstrated that the microwave preparation is rapid, clean, and energy efficient. Therefore, we demonstrated that the combination of the soft chemical method with the microwave process is a promising technique to grow highly oriented thin films with excellent dielectric and ferroelectric properties, which can be used in various integrated device applications. (C) 2004 American Institute of Physics.
Resumo:
Pure and Nb doped PbZr0.4Ti0.603 thin films was prepared by the polymeric precursor method and deposited by spin coating on Pt/Ti/SiO2/Si (100) substrates and annealed at 700 degreesC. The films are oriented in (1 1 0) and (1 0 0) direction. The electric properties of PZT thin films show strong dependence of the crystallographic orientation. The P-E hysteresis loops for the thin film with composition PbZr0.39Ti0.6Nb0.103 showed good saturation, with values for coercive field (E-c) equal to 60 KV cm(-1) and for remanent polarization (P-r) equal to 20 muC cm(-2). The measured dielectric constant (epsilon) is 1084 for this film. These results show good potential for application in FERAM. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Fatigue is an important problem to be considered if a ferroelectric film is used for non-volatile memory devices. In this phenomena, the remanent polarization and coercive field properties degrades in cycles which increase in hysteresis loops. The reasons have been attributed to different mechanisms such as a large voltage applied on ferroelectric film in every reading process in Ferroelectric Random Access Memory (FeRAM) or memories for digital storage in computer, grain size effects and others. The aim of this work is to investigate the influence of the crystallization kinetics on dielectric and ferroelectric properties of the Pb(Zr0.53Ti0.47)O-3 thin films prepared by an alternative chemical method. Films were crystallized in air on Pt/Ti/SiO2/Si substrates at 700 degrees C for 1 hour, in conventional thermal annealing (CTA), and at 700 degrees C for 1 min and 700 degrees C 5 min, using a rapid thermal annealing (RTA) process. Final films were crack free and presented an average of 750 nm in thickness. Dielectric properties were studied in the frequency range of 100 Hz - 1 MHz. All films showed a dielectric dispersion at low frequency. Ferroelectric properties were measured from hysteresis loops at 10 kHz. The obtained remanent polarization (P-r) and coercive field (E-c) were 3.7 mu C/cm(2) and 71.9 kV/cm respectively for film crystallized by CTA while in films crystallized by RTA these parameters were essentially the same. In the fatigue process, the P, value decreased to 14% from the initial value after 1.3 x 10(9) switching cycles, for film by CTA, while for film crystallized by RTA for 5 min, P, decreased to 47% from initial value after 1.7 x 10(9) switching cycles.
Resumo:
Diamictites interbedded with marine shales and turbidites onlap the eastern border of the Parana Basin (Southern Brazil). These poorly sorted sediments were deposited during the Permo-Carboniferous glaciation, and their matrix-supported clasts show no preferred orientation. These massive rocks have been studied using anisotropy of magnetic susceptibility (AMS) and grain shape fabric. Hysteresis loops and thermomagnetic measurements show that AMS depends mostly on the paramagnetic clays, but fine ferromagnetic particles also contribute to the anisotropy. The coarse silt to sand grain preferred orientation study supports the use of AMS in describing the diamictite fabric, at least regarding the orientation of the foliation. AMS and grain shape data reveal subhorizontal to weakly inclined magnetic and grain shape foliation parallel to the regional bedding. The magnetic lineations are normally scattered within the foliation plane in agreement with the oblate AMS ellipsoids found in these rocks. Both fabric patterns are consistent with deposition by subaqueous mudflows that were resedimented downslope, with elastic supply from continental sources. The off-vertical grain shape foliation poles suggest that the deposition of diamictites was controlled by the depocentre topography of the Rio do Sul sub-basin.
Resumo:
Inferior Alveolar Nerve (IAN) transposition is an option for prosthetic rehabilitation in cases of moderate or even severe bone reabsorption for patients that do not tolerate removable dentures. The aim of the present report is to describe an inferior alveolar nerve transposition with involvement of the mental foramen for implant placement. The surgical procedure was performed under local anesthesia, by the inferior alveolar, lingual and buccal nerve blocking technique. Centripetal osteotomy was performed, and bone tissue was removed, leaving the nerve tissue free in the foramen area. After that, transsection of the incisor nerve was performed, and lateral osteotomy was started from the buccal direction, toward the trajectory of the IAN. The procedure was concluded, by making use of a delicate resin spatula to manipulate the vascular-nervous bundle. The drilling sequence for placing the dental implants was performed, and autogenous bone was harvested using a bone collector attached to the surgical suction appliance. After the implants were placed, the bone tissue previously collected during the osteotomies and drilling processes was placed in order to protect the IAN from contact with the implants. The surgical protocol for inferior alveolar nerve transposition, followed by implant placement presented excellent results, with complete recovery of the sensitivity, seven months after the surgical procedure.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Bi4Ti3O12 powder was synthesized from bismuth oxide and titanium oxide. Mixture of oxides was milled in zirconium oxide jar in the planetary ball-mill during 1, 3 and 6 h. Extended time of milling directed to formation of higher amount of titanates perovskite phase. Bi4Ti3O12 was formed between 1 and 3 h of milling time. The phase formation of Bi4Ti3O12, crystal structure and powder particle size were followed by XRD, Raman spectroscopy and SEM analysis. After milling for various times the powders were compacted by pressing and isothermal sintering. Sample milled for 3 h and subsequently sintered at 1000C for 24 h exhibit a hysteresis loop, confirming that the synthesized material possesses ferroelectric properties. All results affect that the structure Bi4Ti3O12 is strongly dependent on the milling time.
Resumo:
We investigated the dielectric properties of pure and lanthanum modified bismuth titanate thin films obtained by the polymeric precursor method. X-ray diffraction of the film annealed at 300 degrees C for 2h indicates a disordered structure. Lanthanum addition increases gradually the dielectric permittivity of films, keeping unchanged their loss tangent. From C-V curve we can see no hysteresis behavior indicating the absence of domain structure. The decrease in the conductivity for the heavily doped Bi4Ti3O12 (BIT) must be associated to the unidentified crystal defects. For comparison, dielectric properties of crystalline BIT film were also investigated. (C) 2007 Published by Elsevier B.V.
Resumo:
Unsteady flow of oil and refrigerant gas through radial clearance in rolling piston compressors has been modeled as a heterogeneous mixture, where the properties are determined from the species conservation transport equation coupled with momentum and energy equations. Time variations of pressure, tangential velocity of the rolling piston and radial clearance due to pump setting have been included in the mixture flow model. Those variables have been obtained by modeling the compression process, rolling piston dynamics and by using geometric characteristics of the pump, respectively. An important conclusion concerning this work is the large variation of refrigerant concentration in the oil-filled radial clearance during the compression cycle. That is particularly true for large values of mass flow rates, and for those cases the flow mixture cannot be considered as having uniform concentration. In presence of low mass flow rates homogeneous flow prevail and the mixture tend to have a uniform concentration. In general, it was observed that for calculating the refrigerant mass flow rate using the difference in refrigerant concentration between compression and suction chambers, a time average value for the gas concentration should be used at the clearance inlet.
Resumo:
Ferroelectric barium titanate thin films were produced by the polymeric precursor method. In this technique, the desired metal cations are chelated in a solution using a hydroxycarboxylic acid as the chelating agent. Barium carbonate and titanium IV isopropoxide were used as precursors for the citrate solution. Ethylene glycol and citric acid were used as polymerization/complexation agents for the process. The crystalline structure of the film annealed at 700 °C had a single perovskite phase with a tetragonal structure. The BaTiO3 film showed good P-E hysteresis loops and C-V characteristics due to the switched ferroelectric domains.
Resumo:
Cold-formed steel shapes have been widely employed in steel construction, where they frequently offer a lower cost solution than do traditional laminated shapes. A classic application of cold-formed steel shapes is purlins in the roof panel of industrial buildings, connected to the roof panel by means of screws. The combined effect of these two elements has been the subject of investigations in some countries. Design criteria were included in the AISI Code in 1991 and 1996. This paper presents and discusses the results obtained from bending tests carried out on shapes commonly used in Brazil, i.e., the channel and the simple lipped channel, Tests were carried out on double shapes with 4.5 and 6.0 meter spans, which were subjected to concentrated loads and braced against each other on the supports and at intermediary points in three different load situations. The panel shape was also analyzed experimentally, simulating the action of wind by means of a vacuum box designed specifically for this purpose. The test results were then compared to those obtained through the theoretical analysis, enabling us to extract important information upon which to base proposed design criteria for the new Brazilian code.
Resumo:
Here we present two-phase flow nonlinear parameter estimation for HFC's flow through capillary tube-suction line heat exchangers, commonly used as expansion devices in small refrigeration systems. The simplifying assumptions adopted are: steady state, pure refrigerant, one-dimensional flow, negligible axial heat conduction in the fluid, capillary tube and suction line walls. Additionally, it is considered that the refrigerant is free from oil and both phases are assumed to be at the same pressure, that is, surface tension effects are neglected. Metastable flow effects are also disregarded, and the vapor is assumed to be saturated at the local pressure. The so-called homogeneous model, involving three, first order, ordinary differential equations is applied to analyze the two-phase flow region. Comparison is done with experimental measurements of the mass flow rate and temperature distribution along capillary tubes working with refrigerant HFC-134a in different operating conditions.