942 resultados para Hippocampal Pyramidal Neurons
Resumo:
We recently noticed an error in the demographic data in this article. The validity of the findings and the conclusions of the paper is not affected. However, there is an error in the reported sample size and in the means and standard deviations of the subjects’ ages and MMSE scores. We would like to correct this error, which came to light when we were re-analyzing the data for a meta-analysis. The error occurred because an older version of a spreadsheet was incorrectly used when reporting the sample composition. Instead of examining 12 Alzheimer's disease patients and 14 healthy elderly controls, we in fact examined 17 Alzheimer’s disease patients and 14 healthy elderly controls. All maps and morphometric data reported in the paper are correct, except that the sample size was in fact slightly higher than that originally reported, and the maps computed in the paper were based on the larger sample (which included five more subjects in the Alzheimer’s disease group). All of the maps and figures in the paper are correct, and the conclusions of the paper are unchanged. We apologize for this error, which falls under the sole responsibility of the first author. The corrected demographic information appears below.
Resumo:
Aging is associated with reductions in hippocampal volume that are accelerated by Alzheimer's disease and vascular risk factors. Our genome-wide association study (GWAS) of dementia-free persons (n = 9,232) identified 46 SNPs at four loci with P values of <4.0 × 10 -7. In two additional samples (n = 2,318), associations were replicated at 12q14 within MSRB3-WIF1 (discovery and replication; rs17178006; P = 5.3 × 10 -11) and at 12q24 near HRK-FBXW8 (rs7294919; P = 2.9 × 10 -11). Remaining associations included one SNP at 2q24 within DPP4 (rs6741949; P = 2.9 × 10 -7) and nine SNPs at 9p33 within ASTN2 (rs7852872; P = 1.0 × 10 -7); along with the chromosome 12 associations, these loci were also associated with hippocampal volume (P < 0.05) in a third younger, more heterogeneous sample (n = 7,794). The SNP in ASTN2 also showed suggestive association with decline in cognition in a largely independent sample (n = 1,563). These associations implicate genes related to apoptosis (HRK), development (WIF1), oxidative stress (MSR3B), ubiquitination (FBXW8) and neuronal migration (ASTN2), as well as enzymes targeted by new diabetes medications (DPP4), indicating new genetic influences on hippocampal size and possibly the risk of cognitive decline and dementia.
Resumo:
Pyramidal asperities of different apical angle were machined on a flat copper surface. Hardness was estimated from the load-displacement graphs obtained by pressing a spherical rigid indenter onto the asperities. The variation of hardness with apical angle and pitch was recorded with a view to contributing to the development of a general framework for relating measured hardness to the surface roughness.
Resumo:
γ-aminobutyric acid (GABA) is the main inhibitory transmitter in the nervous system and acts via three distinct receptor classes: A, B, and C. GABAC receptors are ionotropic receptors comprising ρ subunits. In this work, we aimed to elucidate the expression of ρ subunits in the postnatal brain, the characteristics of ρ2 homo-oligomeric receptors, and the function of GABAC receptors in the hippocampus. In situ hybridization on rat brain slices showed ρ2 mRNA expression from the newborn in the superficial grey layer of the superior colliculus, from the first postnatal week in the hippocampal CA1 region and the pretectal nucleus of the optic tract, and in the adult dorsal lateral geniculate nucleus. Quantitative RT-PCR revealed expression of all three ρ subunits in the hippocampus and superior colliculus from the first postnatal day. In the hippocampus, ρ2 mRNA expression clearly dominated over ρ1 and ρ3. GABAC receptor protein expression was confirmed in the adult hippocampus, superior colliculus, and dorsal lateral geniculate nucleus by immunohistochemistry. From the selective distribution of ρ subunits, GABAC receptors may be hypothesized to be specifically involved in aspects of visual image motion processing in the rat brain. Although previous data had indicated a much higher expression level for ρ2 subunit transcripts than for ρ1 or ρ3 in the brain, previous work done on Xenopus oocytes had suggested that rat ρ2 subunits do not form functional homo-oligomeric GABAC receptors but need ρ1 or ρ3 subunits to form hetero-oligomers. Our results demonstrated, for the first time, that HEK 293 cells transfected with ρ2 cDNA displayed currents in whole-cell patch-clamp recordings. Homomeric rat ρ2 receptors had a decreased sensitivity to, but a high affinity for picrotoxin and a marked sensitivity to the GABAC receptor agonist CACA. Our results suggest that ρ2 subunits may contribute to brain function, also in areas not expressing other ρ subunits. Using extracellular electrophysiological recordings, we aimed to study the effects of the GABAC receptor agonists and antagonists on responses of the hippocampal neurons to electrical stimulation. Activation of GABAC receptors with CACA suppressed postsynaptic excitability and the GABAC receptor antagonist TPMPA inhibited the effects of CACA. Next, we aimed to display the activation of the GABAC receptors by synaptically released GABA using intracellular recordings. GABA-mediated long-lasting depolarizing responses evoked by high-frequency stimulation were prolonged by TPMPA. For weaker stimulation, the effect of TPMPA was enhanced after GABA uptake was inhibited. Our data demonstrate that GABAC receptors can be activated by endogenous synaptic transmitter release following strong stimulation or under conditions of reduced GABA uptake. The lack of GABAC receptor activation by less intensive stimulation under control conditions suggests that these receptors are extrasynaptic and activated via spillover of synaptically released GABA. Taken together with the restricted expression pattern of GABAC receptors in the brain and their distinctive pharmacological and biophysical properties, our findings supporting extrasynaptic localization of these receptors raise interesting possibilities for novel pharmacological therapies in the treatment of, for example, epilepsy and sleep disorders.
Resumo:
AMPA receptors are an important class of ionotropic glutamate receptors which participate in fast excitatory synaptic transmission in most brain areas. They have a pivotal role in adjustment of cell membrane excitability as their cell membrane expression levels is altered in brain physiology such as in learning and memory formation. AMPA receptor function and trafficking is regulated by several proteins, such as transmembrane AMPA receptor regulatory proteins (TARPs). NMDA-type glutamate receptors are important target molecules of ethanol. The role of AMPA receptors in the actions of ethanol has not been clarified as thoroughly. Furthermore, the regulation of AMPA receptor synthesis and their possible adaptation in neurons with altered inhibitory mechanisms are poorly understood. In this thesis work AMPA receptor pharmacology, trafficking and synaptic localization was studied using patch-clamp electrophysiology. Both native and recombinant AMPA receptors were studied. Hippocampal slices from transgenic Thy1alfa6 mice with altered inhibition were used to study adaptation of AMPA receptors. Ethanol was found to inhibit AMPA receptor function by increasing desensitization of the receptor, as the steady-state current was inhibited more than the peak current. Ethanol inhibition was reduced when cyclothiazide was used to block desensitization and when non-desensitizing mutant receptors were studied. Ethanol also increased the rate of desensitization, which was increased further by the coexpression of TARP-proteins. We found that the agonist binding capability is important for trafficking AMPA receptors from endoplasmic reticulum to the cell membrane. TARP rescues the surface expression of non-binding AMPA receptor mutants in HEK293 cells, but not in native neurons. Studies with Thy1alfa6 mice revealed that decreased inhibition decrease AMPA receptor mediated excitation keeping the neurotransmission in balance. Thy1alfa6 mice also had lower sensitivity to electroshock convulsions, presumably due to the decreased AMPA receptor function. The results suggest that during alcohol intoxication ethanol may inhibit AMPA receptors by increasing the rate and the extent of desensitization. TARPs appear to enhance ethanol inhibition. TARPs also participate in trafficking of AMPA receptors upon their synthesis in the cell. AMPA receptors mediate also long-term adaptation to altered neuronal excitability, which adds to their well-known role in synaptic plasticity.
Resumo:
Marinesco-Sjögren syndrome (MSS) is a rare autosomal recessive neurodegenerative disorder characterized by cerebellar ataxia due to cerebellar cortical atrophy, infantile- or childhood-onset bilateral cataracts, progressive myopathy, and mild to severe mental retardation. Additional features include hypergonadotropic hypogonadism, various skeletal abnormalities, short stature, and strabismus. The neuroradiologic hallmarks are hypoplasia of both the vermis and cerebellar hemispheres. The histopathologic findings include severe cerebellar atrophy and loss of Purkinje and granule cells. The common pathologic findings in muscle biopsy are variation in muscle fiber size, atrophic fibers, fatty replacement, and rimmed vacuole formation. The presence of marked cerebellar atrophy with myopathy distinguishes MSS from another rare syndrome, the congenital cataracts, facial dysmorphism, and neuropathy syndrome (CCFDN). Previously, work by others had resulted in the identification of an MSS locus on chromosome 5q31. A subtype of MSS with myoglobinuria and neuropathy had been linked to the CCFDN locus on chromosome 18qter, at which mutations in the CTDP1 gene had been identified. We confirmed linkage to the previously identified locus on chromosome 5q31 in two Finnish families with eight affected individuals, reduced the critical region by fine-mapping, and identified SIL1 as a gene underlying MSS. We found a common homozygous founder mutation in all Finnish patients. The same mutation was also present in patient samples from Norway and Sweden. Altogether, we identified eight mutations in SIL1, including nonsense, frameshift, splice site alterations, and one missense mutation. SIL1 encodes a nucleotide exchange factor for the endoplasmic reticulum (ER) resident heat-shock protein 70 chaperone GRP78. GRP78 functions in protein synthesis and quality control of the newly synthesized polypeptides. It senses and responds to stressful cellular conditions. We showed that in mice, SIL1 and GRP78 show highly similar spatial and temporal tissue expression in developing and mature brain, eye, and muscle. Studying endogenous proteins in mouse primary hippocampal neurons, we found that SIL1 and GRP78 colocalize and that SIL1 localizes to the ER. We studied the subcellular localization of two mutant proteins, a missense mutant found in two patients and an artificial mutant lacking the ER retrieval signal, and found that both mutant proteins formed aggregates within the ER. Well in line with our findings and the clinical features of MSS, recent work by Zhao et al. showed that a truncation of SIL1 causes ataxia and cerebellar Purkinje cell loss in the naturally occurring woozy mutant mouse. Prior to Purkinje cell degeneration, the unfolded protein response is initiated and abnormal protein accumulations are present. MSS thus joins the group of protein misfolding and accumulation diseases. These findings highlight the importance of SIL1 and the role of the ER in neuronal function and survival. The results presented in this thesis provide tools for the molecular genetic diagnostics of MSS and give a basis for future studies on the molecular pathogenesis of MSS. Understanding the mechanisms behind this pleiotropic syndrome may provide insights into more common forms of ataxia, myopathy, and neurodegeneration.
Resumo:
Gamma-aminobutyric acid (GABA) acting through ionotropic GABAA receptors plays a crucial role in the activity of the central nervous system (CNS). It triggers Ca2+ rise providing trophic support in developing neurons and conducts fast inhibitory function in mature neuronal networks. There is a developmental change in the GABAA reversal potential towards more negative levels during the first two postnatal weeks in rodent hippocampus. This change provides the basis for mature GABAergic activity and is attributable to the developmental expression of the neuron-specific potassium chloride cotransporter 2 (KCC2). In this work we have studied the mechanisms responsible for the control of KCC2 developmental expression. As a model system we used hippocampal dissociated cultures plated from embryonic day (E) 17 mice embryos before the onset of KCC2 expression. We showed that KCC2 was significantly up-regulated during the first two weeks of culture development. Interestingly, the level of KCC2 upregulation was not altered by chronic pharmacological blockage of action potentials as well as GABAergic and glutamatergic synaptic transmission. By in silico analysis of the proximal KCC2 promoter region we identified 10 candidate transcription factor binding sites that are highly conserved in mammalian KCC2 genes. One of these transcription factors, namely early growth response factor 4 (Egr4), had similar developmental profile as KCC2 and considerably increased the activity of mouse KCC2 gene in neuronal cells. Next we investigated the involvement of neurotrophic factors in regulation of Egr4 and KCC2 expression. We found that in immature hippocampal cultures Egr4 and KCC2 levels were strongly up-regulated by brain derived neurotrophic factor (BDNF)and neurturin. The effect of neurotrophic factors was dependent on the activation of a mitogen activated protein kinase (MAPK) signal transduction pathway. Intact Egr4-binding site in proximal KCC2 promoter was required for BDNF-induced KCC2 transcription. In vitro data were confirmed by several in vivo experiments where we detected an upregulation of KCC2 protein levels after intrahippocampal administration of BDNF or neurturin. Importantly, a MAPK-dependent rise in Egr4 and KCC2 expression levels was also observed after a period of kainic acid-induced seizure activity in neonatal rats suggesting that neuronal activity might be involved in Egr4-mediated regulation of KCC2 expression. Finally we demonstrated that the mammalian KCC2 gene (alias Slc12a5) generated two neuron-specific isoforms by using alternative promoters and first exons. A novel isoform of KCC2, termed KCC2a, differed from the previously known KCC2b isoform by 40 unique N-terminal amino acid residues. KCC2a expression was restricted to CNS,remained relatively constant during postnatal development, and contributed 20 50% of total KCC2 mRNA expression in the neonatal mouse brainstem and spinal cord. In summary, our data provide insight into the complex regulation of KCC2 expression during early postnatal development. Although basal KCC2 expression seems to be intrinsically regulated, it can be further augmented by neurotrophic factors or by enhanced activity triggering MAPK phosphorylation and Egr4 induction. Additional KCC2a isoform, regulated by another promoter, provides basal KCC2 level in neonatal brainstem and spinal cord required for survival of KCC2b knockout mice.
Resumo:
Neuronal plasticity is a well characterized phenomenon in the developing and adult brain. It refers to capasity of a single neuron to modify morphology, synaptic connections and activity. Neuronal connections and capacity for plastic events are compromised in several pathological disorders, such as major depression. In addition, neuronal atrophy has been reported in depressive patients. Neurotrophins are a group of secretory proteins functionally classified as neuronal survival factors. Neurotrophins, especially brain derived neurotrophic factor (BDNF), have also been associated with promoting neuronal plasticity in dysfunctional neuronal networks. Chronic antidepressant treatment increases plastic events including neurogenesis and arborization and branching of neurites in distinct brain areas, such as the hippocampus. One suggested mode of action is where the antidepressants elevate the synaptic levels of BDNF thus further activating several signaling cascades via trkB-receptor. In our studies we have tried to clarify the mechanisms of action for antidepressants and to resolve the role of BDNF in this process. We found that chronic antidepressant treatment increases amount of markers of neuronal plasticity in both hippocampus and in the medial prefrontal cortex, both of which are closely linked to the etiology of major depression. Secondary actions of antidepressants include rapid activation of the trkB receptor followed by a phosphorylation of transcription factor CREB. In addition, activation of CREB by phosphorylation appears responsible for the regulation of the expression of the BDNF gene. Using transgenic mice we found that BDNF-induced trkB-mediated signaling proved crucial for the behavioral effects of antidepressants in the forced swimming test and for the survival of newly-born neurons in the adult hippocampus. Antidepressants not only increased neurogenesis in the adult hippocampus but also elevated the turnover of hippocampal neurons. During these studies we also discovered that another trkB ligand, NT-4, is involved in morphine-mediated anti-nociception and tolerance. These results present a novel role for trkB-mediated signaling in plastic events present in the opioid system. This thesis evaluates neuronal plasticity and trkB as a target for future antidepressant treatments.
Resumo:
Neurotrophic factors play essential role in the development and functioning of the nervous system and other organs. Glial cell line-Derived Neurotrophic Factor (GDNF) family ligands (GFLs) are of particular interest because they promote the survival of dopaminergic neurons in vitro, in Parkinson s disease animal models and in patients. GDNF is also a potent survival factor for the central motoneurons and thus is considered as a potential lead for the treatment of amyotrophic lateral sclerosis. The survival promoting receptor complex for GFLs consists of a ligand-specific co-receptor, GFRα and a signal transducing module, receptor tyrosine kinase RET. At least GDNF and persephin, a GFL, have established functions outside central nervous system. GDNF is crucial for enteric nervous system and kidney development as well as for spermatogenesis. Persephin controls calcitonin secretion. Communication between cells often occurs in the extracellular matrix (ECM), a meshwork, which is secreted and deposited by the cells and is mainly composed of fibrillar proteins and polymerized sugars. We evaluated the relationship between GFLs and extracellular matrix components and demonstrated that three GFLs - GDNF, neurturin and artemin bind heparan sulfates with nanomolar affinities. The fourth member of the family - persephin binds these polysaccharides thousand times less tightly. GDNF, neurturin and artemin also bind with high affinity to heparan sulfate proteoglycan (HSPG) isolated from the nervous system, syndecan-3. GDNF signals through HSPGs, evoking Src family kinase activation. This signaling induces cell spreading, hippocampal neurite outgrowth in vitro and cellular migration. Specifically, GDNF signaling through syndecan-3 is important for embryonic cortical neuron migration. Syndecan-3-deficient mice, similarly to mice lacking GDNF, have less GABAergic neurons in their cortex, as compared to the wild-type mice. This fact provides indirect evidence that GDNF interaction with syndecan-3 is important for cortical brain development. Noteworthy, in non-neuronal tissues GFLs may signal via other syndecans. We also present the structural model for a GDNF co-receptor, GFRα1. The X-ray structure of the GFRα1 domain 3 was solved with 1.8 Å resolution, revealing a new protein fold. Later we also solved the structure of the truncated GFRα1 in the complex with GDNF and this model was confirmed by site-directed mutagenesis. In summary, our work contributed to the structural characterization of GFRα-based receptor complex and revealed a new receptor for GDNF, neurturin and artemin the HSPG syndecan-3. This information is critically important for the development of GFRα/RET agonists for the treatment of neurodegenerative diseases.
Resumo:
Programed cell death (PCD) is a fundamental biological process that is as essential for the development and tissue homeostasis as cell proliferation, differentiation and adaptation. The main mode of PCD - apoptosis - occurs via specifi c pathways, such as mitochondrial or death receptor pathway. In the developing nervous system, programed death broadly occurs, mainly triggered by the defi ciency of different survival-promoting neurotrophic factors, but the respective death pathways are poorly studied. In one of the best-characterized models, sympathetic neurons deprived of nerve growth factor (NGF) die via the classical mitochondrial apoptotic pathway. The main aim of this study was to describe the death programs activated in these and other neuronal populations by using neuronal cultures deprived of other neurotrophic factors. First, this study showed that the cultured sympathetic neurons deprived of glial cell line-derived neurotrophic factor (GDNF) die via a novel non-classical death pathway, in which mitochondria and death receptors are not involved. Indeed, cytochrome c was not released into the cytosol, Bax, caspase-9, and caspase-3 were not involved, and Bcl-xL overexpression did not prevent the death. This pathway involved activation of mixed lineage kinases and c-jun, and crucially requires caspase-2 and -7. Second, it was shown that deprivation of neurotrophin-3 (NT-3) from cultured sensory neurons of the dorsal root ganglia kills them via a dependence receptor pathway, including cleavage of the NT- 3 receptor TrkC and liberation of a pro-apoptotic dependence domain. Indeed, death of NT-3-deprived neurons was blocked by a dominant-negative construct interfering with TrkC cleavage. Also, the uncleavable mutant of TrkC, replacing the siRNA-silenced endogeneous TrkC, was not able to trigger death upon NT-3 removal. Such a pathway was not activated in another subpopulation of sensory neurons deprived of NGF. Third, it was shown that cultured midbrain dopaminergic neurons deprived of GDNF or brainderived neurotrophic factor (BDNF) kills them by still a different pathway, in which death receptors and caspases, but not mitochondria, are activated. Indeed, cytochrome c was not released into the cytosol, Bax was not activated, and Bcl-xL did not block the death, but caspases were necessary for the death of these neurons. Blocking the components of the death receptor pathway - caspase-8, FADD, or Fas - blocked the death, whereas activation of Fas accelerated it. The activity of Fas in the dopaminergic neurons could be controlled by the apoptosis inhibitory molecule FAIML. For these studies we developed a novel assay to study apoptosis in the transfected dopaminergic neurons. Thus, a novel death pathway, characteristic for the dopaminergic neurons was described. The study suggests death receptors as possible targets for the treatment of Parkinson s disease, which is caused by the degeneration of dopaminergic neurons.
Resumo:
The modern diet has become highly sweetened, resulting in unprecedented levels of sugar consumption, particularly among adolescents. While chronic long-term sugar intake is known to contribute to the development of metabolic disorders including obesity and type II diabetes, little is known regarding the direct consequences of long-term, binge-like sugar consumption on the brain. Because sugar can cause the release of dopamine in the nucleus accumbens (NAc) similarly to drugs of abuse, we investigated changes in the morphology of neurons in this brain region following short- (4 weeks) and long-term (12 weeks) binge-like sucrose consumption using an intermittent two-bottle choice paradigm. We used Golgi-Cox staining to impregnate medium spiny neurons (MSNs) from the NAc core and shell of short- and long-term sucrose consuming rats and compared these to age-matched water controls. We show that prolonged binge-like sucrose consumption significantly decreased the total dendritic length of NAc shell MSNs compared to age-matched control rats. We also found that the restructuring of these neurons resulted primarily from reduced distal dendritic complexity. Conversely, we observed increased spine densities at the distal branch orders of NAc shell MSNs from long-term sucrose consuming rats. Combined, these results highlight the neuronal effects of prolonged binge-like intake of sucrose on NAc shell MSN morphology.
Resumo:
Nisäkkäillä keskushermoston uudistuminen on rajallista. Keskushermostovamman jälkeen aktivoituu monien paranemista edistävien tekijöiden lisäksi myös estäviä tekijöitä. Monella molekyylillä, kuten laminiinilla, on keskushermoston paranemista tehostava vaikutus. Laminiinit ovat myös kehon tyvikalvojen oleellisia rakennuskomponentteja. Keskushermoston laminiinit ovat tärkeitä sikiökehityksen aikana, esimerkiksi hermosäikeiden ohjauksessa. Myöhemmin ne osallistuvat veriaivoesteen ylläpitoon sekä vammojen jälkeiseen kudosreaktioon. Väitöskirjatutkimuksessani olen selvittänyt lamiiniinien, erityisesti γ1 laminiinin ja sen KDI peptidin, ekspressiota keskushermoston vammatilanteissa. Kokeellisessa soluviljelmäasetelmassa, joka simuloi vammautunutta keskushermostoympäristöä, osoitimme että KDI peptidi voimistaa sekä hermosolujen selviytymistä että hermosäikeiden kasvua. Kainihappo on glutamaattianalogi, ja glutamaattitoksisuudella uskotaan olevan tärkeä merkitys keskushermoston eri vamma- ja sairaustilanteissa tapahtuvassa hermosolukuolemassa. Toisessa väitöskirjani osatyössä osoitimme eläinmallissa KDI peptidin suojaavan rotan aivojen hippokampuksen hermosoluja kainihapon aiheuttamalta solutuholta. Elektrofysiologisilla mittauksilla osoitimme kolmannessa osatyössäni, että KDI peptidi estää glutamaattireseptorivirtoja ja suojaa siten glutamaattitoksisuudelta. Aivoveritulpan aiheuttama aivovaurio on yleinen syy aivohalvaukseen. Viimeisessä osatyössäni tutkimme eläinmallissa laminiinien ekspressiota iskemian vaurioittamassa aivokudoksessa. Laminiiniekspression todettiin voimistuvan vaurion jälkeen sekä tyvikalvo- että soluväliainerakenteissa. Vaurion ympärillä havaittiin astrosyyttejä, jotka jo melko aikaisessa vaiheessa vamman jälkeen ekspressoivat γ1 laminiinia ja KDI peptidiä. Tästä voidaan päätellä laminiinien osallistuvan aivoiskeemisen vaurion patofysiologiaan. Yleisesti väitöskirjatyöni kartoitti laminiinien ekspressiota sekä terveessä että vammautuneessa keskushermostossa. Väitöskirjatyöni tukee hypoteesia, jonka mukaan KDI peptidi suojaa keskushermostoa vaurioilta.
Resumo:
Neurons can be divided into various classes according to their location, morphology, neurochemical identity and electrical properties. They form complex interconnected networks with precise roles for each cell type. GABAergic neurons expressing the calcium-binding protein parvalbumin (Pv) are mainly interneurons, which serve a coordinating function. Pv-cells modulate the activity of principal cells with high temporal precision. Abnormalities of Pv-interneuron activity in cortical areas have been linked to neuropsychiatric illnesses such as schizophrenia. Cerebellar Purkinje cells are known to be central to motor learning. They are the sole output from the layered cerebellar cortex to deep cerebellar nuclei. There are still many open questions about the precise role of Pv-neurons and Purkinje cells, many of which could be answered if one could achieve rapid, reversible cell-type specific modulation of the activity of these neurons and observe the subsequent changes at the whole-animal level. The aim of these studies was to develop a novel method for the modulation of Pv-neurons and Purkinje cells in vivo and to use this method to investigate the significance of inhibition in these neuronal types with a variety of behavioral experiments in addition to tissue autoradiography, electrophysiology and immunohistochemistry. The GABA(A) receptor γ2 subunit was ablated from Pv-neurons and Purkinje cells in four separate mouse lines. Pv-Δγ2 mice had wide-ranging behavioral alterations and increased GABA-insensitive binding indicative of an altered GABA(A) receptor composition, particularly in midbrain areas. PC-Δγ2 mice experienced little or no motor impairment despite the lack of inhibition in Purkinje cells. In Pv-Δγ2-partial rescue mice, a reversal of motor and cognitive deficits was observed in addition to restoration of the wild-type γ2F77 subunit to the reticular nucleus of thalamus and the cerebellar molecular layer. In PC-Δγ2-swap mice, zolpidem sensitivity was restored to Purkinje cells and the administration of systemic zolpidem evoked a transient motor impairment. On the basis of these results, it is concluded that this new method of cell-type specific modulation is a feasible way to modulate the activity of selected neuronal types. The importance of Purkinje cells to motor control supports previous studies, and the crucial involvement of Pv-neurons in a range of behavioral modalities is confirmed.
Resumo:
The whole-cell voltage clamp technique was used to record potassium currents in mouse fetal hypothalamic neurons developing in culture medium from days 1 to 17. The neurons were derived from fetuses of IOPS/OF1 mice on the 14th day of gestation. The mature neurons (>six days in culture) showed both a transient potassium current and a non-inactivating delayed rectifier potassium current. These were identified pharmacologically by using the potassium channel blockers tetraethyl ammonium chloride and 4-aminopyridine, and on the basis of their kinetics and voltage sensitivities. The delayed rectifier potassium current had a threshold of −20 mV, a slow time-course of activation, and was sustained during the voltage pulse. The 4-aminopyridine-sensitive current was transient, and was activated from a holding potential more negative (−80 mV) than that required for evoking the delayed rectifier potassium current (−40 mV). The delayed rectifier potassium current was detectable from day 1 onwards, while the transient potassium current showed a distinct developmental trend. The time-constant of inactivation became faster with age in culture. The half steady-state inactivation potential showed a shift towards less negative membrane potentials with age, and the relationship was best described by a logarithmic regression equation.The developmental trend of the transient potassium current may relate functionally to the progressive morphological changes, and the appearance of synaptic connections during ontogenesis.