985 resultados para High productivity


Relevância:

30.00% 30.00%

Publicador:

Resumo:

P>1. The hypothesis that nutrient enrichment will affect bryozoan abundance was tested using two complementary investigations; a field-based method determining bryozoan abundance in 20 rivers of different nutrient concentrations by deploying statoblast (dormant propagule) traps and an experimental laboratory microcosm study measuring bryozoan growth and mortality. These two methods confirmed independently that increased nutrient concentrations in water promote increases in the biomass of freshwater bryozoans. 2. Statoblasts of the genus Plumatella were recorded in all rivers, regardless of nutrient concentrations, demonstrating that freshwater bryozoans are widespread. Concentrations of Plumatella statoblasts were high in rivers with high nutrient concentrations relative to those with low to moderate nutrient concentrations. Regression analyses indicated that phosphorus concentrations, in particular, significantly influenced statoblast concentrations. 3. Concentrations of Lophopus crystallinus statoblasts were also higher in sites characterised by high nutrient concentrations. Logistic regression analysis revealed that the presence of L. crystallinus statoblasts was significantly associated with decreasing altitude and increasing phosphorus concentrations. This apparently rare species was found in nine rivers (out of 20), seven of which were new sites for L. crystallinus. 4. Growth rates of Fredericella sultana in laboratory microcosms increased with increasing nutrient concentration and high mortality rates were associated with low nutrient concentrations. 5. Our results indicate that bryozoans respond to increasing nutrient concentrations by increased growth, resulting in higher biomasses in enriched waters. We also found that an important component of bryozoan diets can derive from food items lacking chlorophyll a. Finally, bryozoans may be used as independent proxies for inferring trophic conditions, a feature that may be especially valuable in reconstructing historical environments by assessing the abundance of statoblasts in sediment cores.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temperature, relative humidity, and air quality all affect the sensory system via thermo receptors in the skin and the olfactory system. Air quality is mainly defined by the contaminants in the air. However, the most persistent memory of any space is often its odor. Strong, emotional, and past experiences are awakened by the olfactory sense. Odors can also influence cognitive processes that affect creative task performance, as well as personal memories and moods. Besides nitrogen and oxygen, the air contains particles and many chemicals that affect the efficiency of the oxygenation process in the blood, and ultimately the air breathed affects thinking and concentration. It is important to show clients the value of spending more capital on high-quality buildings that promote good ventilation. The process of achieving indoor-air quality is a continual one throughout the design, construction, commissioning, and facilities management processes. This paper reviews the evidence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nineteen wheat cultivars, released from 1934 to 2000, were grown at two organic and two non-organic sites in each of 3 years. Assessments included grain yield, grain protein concentration, protein yield, disease incidence and green leaf area. The superiority of each cultivar (the sum of the squares of the differences between its mean in each environment and the mean of the best cultivar there, divided by twice the number of environments; CS) was calculated for yield, grain protein concentration and protein yield, and ranked in each environment. The yield and grain protein concentration CS were more closely correlated with cultivar release date at the non-organic sites than at organic sites. This difference may be attributed to higher yield levels with larger differences among cultivars at the non-organic sites, rather than to improved stability (i.e. similar ranks) across sites. The significant difference in the correlation of protein yield CS and cultivar age between organic and non-organic sites would support evidence that the ability to take up mineral nitrogen (N) compared to soil N has been a component of the selection conditions of more modern cultivars (released after 1989). This is supported by assessment of green leaf area (GLA), where more modern cultivars in the non-organic systems had greater late-season GLA, a trend that was not identified in organic conditions. This effect could explain the poor correlation between age and protein yield CS in organic compared to non-organic conditions where modern cultivars are selected to benefit from later nitrogen (N) availability which includes the spring nitrogen applications tailored to coincide with peak crop demand. Under organic management, N release is largely based on the breakdown of fertility-building crops incorporated (ploughed-in) in the previous autumn. The release of nutrients from these residues is dependent on the soil conditions, which includes temperature and microbial populations, in addition to the potential leaching effect of high winter rainfall in the UK. In organic cereal crops, early resource capture is a major advantage for maximizing the utilization of nutrients from residue breakdown. It is concluded that selection of cultivars under conditions of high agrochemical inputs selects for cultivars that yield well under maximal conditions in terms of nutrient availability and pest, disease and weed control. The selection conditions for breeding have a tendency to select cultivars which perform relatively better in non-organic compared to organic systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grain legumes, such as peas (Pisum sativum L.), are known to be weak competitors against weeds when grown as the sole crop. In this study, the weed-suppression effect of pea–barley (Hordeum vulgare L.)intercropping compared to the respective sole crops was examined in organic field experiments across Western Europe (i.e., Denmark, the United Kingdom, France, Germany and Italy). Spring pea (P) and barley(B) were sown either as the sole crop, at the recommended plant density (P100 and B100, respectively), or in replacement (P50B50) or additive (P100B50)intercropping designs for three seasons (2003–2005). The weed biomass was three times higher under the pea sole crops than under both the intercrops and barley sole crops at maturity. The inclusion of joint experiments in several countries and various growing conditions showed that intercrops maintain a highly asymmetric competition over weeds, regardless of the particular weed infestation (species and productivity), the crop biomass or the soil nitrogen availability. The intercropping weed suppression was highly resilient, whereas the weed suppression in pea sole crops was lower and more variable. The pea–barley intercrops exhibited high levels of weed suppression, even with a low percentage of barley in the total biomass. Despite a reduced leaf area in the case of a low soil N availability, the barley sole crops and intercrops displayed high weed suppression, probably because of their strong competitive capability to absorb soil N. Higher soil N availabilities entailed increased leaf areas and competitive ability for light, which contributed to the overall competitive ability against weeds for all of the treatments. The contribution of the weeds in the total dry matter and soil N acquisition was higher in the pea sole crop than in the other treatments, in spite of the higher leaf areas in the pea crops.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A poplar short rotation coppice (SRC) grown for the production of bioenergy can combine carbon (C) storage with fossil fuel substitution. Here, we summarize the responses of a poplar (Populus) plantation to 6 yr of free air CO2 enrichment (POP/EUROFACE consisting of two rotation cycles). We show that a poplar plantation growing in nonlimiting light, nutrient and water conditions will significantly increase its productivity in elevated CO2 concentrations ([CO2]). Increased biomass yield resulted from an early growth enhancement and photosynthesis did not acclimate to elevated [CO2]. Sufficient nutrient availability, increased nitrogen use efficiency (NUE) and the large sink capacity of poplars contributed to the sustained increase in C uptake over 6 yr. Additional C taken up in high [CO2] was mainly invested into woody biomass pools. Coppicing increased yield by 66% and partly shifted the extra C uptake in elevated [CO2] to above-ground pools, as fine root biomass declined and its [CO2] stimulation disappeared. Mineral soil C increased equally in ambient and elevated [CO2] during the 6 yr experiment. However, elevated [CO2] increased the stabilization of C in the mineral soil. Increased productivity of a poplar SRC in elevated [CO2] may allow shorter rotation cycles, enhancing the viability of SRC for biofuel production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amid a worldwide increase in tree mortality, mountain pine beetles (Dendroctonus ponderosae Hopkins) have led to the death of billions of trees from Mexico to Alaska since 2000. This is predicted to have important carbon, water and energy balance feedbacks on the Earth system. Counter to current projections, we show that on a decadal scale, tree mortality causes no increase in ecosystem respiration from scales of several square metres up to an 84 km2 valley. Rather, we found comparable declines in both gross primary productivity and respiration suggesting little change in net flux, with a transitory recovery of respiration 6–7 years after mortality associated with increased incorporation of leaf litter C into soil organic matter, followed by further decline in years 8–10. The mechanism of the impact of tree mortality caused by these biotic disturbances is consistent with reduced input rather than increased output of carbon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We utilized an ecosystem process model (SIPNET, simplified photosynthesis and evapotranspiration model) to estimate carbon fluxes of gross primary productivity and total ecosystem respiration of a high-elevation coniferous forest. The data assimilation routine incorporated aggregated twice-daily measurements of the net ecosystem exchange of CO2 (NEE) and satellite-based reflectance measurements of the fraction of absorbed photosynthetically active radiation (fAPAR) on an eight-day timescale. From these data we conducted a data assimilation experiment with fifteen different combinations of available data using twice-daily NEE, aggregated annual NEE, eight-day f AP AR, and average annual fAPAR. Model parameters were conditioned on three years of NEE and fAPAR data and results were evaluated to determine the information content from the different combinations of data streams. Across the data assimilation experiments conducted, model selection metrics such as the Bayesian Information Criterion and Deviance Information Criterion obtained minimum values when assimilating average annual fAPAR and twice-daily NEE data. Application of wavelet coherence analyses showed higher correlations between measured and modeled fAPAR on longer timescales ranging from 9 to 12 months. There were strong correlations between measured and modeled NEE (R2, coefficient of determination, 0.86), but correlations between measured and modeled eight-day fAPAR were quite poor (R2 = −0.94). We conclude that this inability to determine fAPAR on eight-day timescale would improve with the considerations of the radiative transfer through the plant canopy. Modeled fluxes when assimilating average annual fAPAR and annual NEE were comparable to corresponding results when assimilating twice-daily NEE, albeit at a greater uncertainty. Our results support the conclusion that for this coniferous forest twice-daily NEE data are a critical measurement stream for the data assimilation. The results from this modeling exercise indicate that for this coniferous forest, average annuals for satellite-based fAPAR measurements paired with annual NEE estimates may provide spatial detail to components of ecosystem carbon fluxes in proximity of eddy covariance towers. Inclusion of other independent data streams in the assimilation will also reduce uncertainty on modeled values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Because of the economical relevance of sugarcane and its high potential as a source of biofuel, it is important to understand how this crop will respond to the foreseen increase in atmospheric [CO(2)]. The effects of increased [CO(2)] on photosynthesis, development and carbohydrate metabolism were studied in sugarcane (Saccharum ssp.). Plants were grown at ambient (similar to 370 ppm) and elevated (similar to 720 ppm) [CO(2)] during 50 weeks in open-top chambers. The plants grown under elevated CO(2) showed, at the end of such period, an increase of about 30% in photosynthesis and 17% in height, and accumulated 40% more biomass in comparison with the plants grown at ambient [CO(2)]. These plants also had lower stomatal conductance and transpiration rates (-37 and -32%, respectively), and higher water-use efficiency (c.a. 62%). cDNA microarray analyses revealed a differential expression of 35 genes on the leaves (14 repressed and 22 induced) by elevated CO(2). The latter are mainly related to photosynthesis and development. Industrial productivity analysis showed an increase of about 29% in sucrose content. These data suggest that sugarcane crops increase productivity in higher [CO(2)], and that this might be related, as previously observed for maize and sorghum, to transient drought stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from sucrose and propionic acid by Burkholderia sacchari IPT 189 was studied using a two-stage bioreactor process. In the first stage, this bacterium was cultivated in a balanced culture medium until sucrose exhaustion. In the second stage, a solution containing sucrose and propionic acid as carbon source was fed to the bioreactor at various sucrose/propionic acid (s/p) ratios at a constant specific flow rate. Copolymers with 3HV content ranging from 40 down to 6.5 (mol%) were obtained with 3HV yield from propionic acid (Y-3HV/prop) increasing from 1.10 to 1.34 g g(-1). Copolymer productivity of 1 g l(-1) h(-1) was obtained with polymer biomass content rising up to 60% by increasing a specific flow rate at a constant s/p ratio. Increasing values of 3HV content were obtained by varying the s/p ratios. A simulation of production costs considering Y-3HV/prop obtained in the present work indicated that a reduction of up to 73% can be reached, approximating US$ 1.00 per kg which is closer to the value to produce P3HB from sucrose (US$ 0.75 per kg).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper examines structural changes that occur in the total factor productivity (TFP) within countries. It is possible that some episodes of high economic growth or economic decline are associated with permanent productivity shocks, therefore, this research has two objectives. The Örst one is to estimate the structural changes present in TFP for a sample of 81 countries between 1950(60) and 2000. The second one is to identify, whenever possible, episodes in the political and economic history of these countries that may account for the structural breaks in question. The results suggest that about 85% of the TFP time-series present at least one structural break, moreover, at least half the structural changes can be attributed to internal factors, such as independence or a newly adopted constitution, and about 30% to external shocks, such as oil shock or shocks in international interest rates. The majority of the estimated breaks are downwards, indicating that after a break the TFP tends to decrease, implying that institutional rearrangements, external shocks, or internal shocks may be costly and from which it is very di¢ cult to recover.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polygalacturonases are part of the group of enzymes involved in pectin degradation. The aim of this work was to investigate some of the factors affecting polygalacturonase production by an Aspergillus giganteus strain and to characterize this pectinolytic activity. Several carbon sources, both pure substances and natural substrates, were tested in standing cultures, and the best results were obtained with orange bagasse and purified citrus pectin. on citrus pectin as sole carbon source, the highest extracellular activity (9.5 U/ml and 40.6 U/mg protein) was obtained in 4.5-day-old cultures shaken at 120 rpm, pH 3.5 and 30 degrees C, while on orange bagasse, the highest extracellular activity (48.5 U/ml and 78.3 U/mg protein) was obtained in 3.5-day-old cultures shaken at 120 rpm, pH 6.0 and 30 degrees C. Optimal polygalacturonase activity was observed in assays conducted at pH 5.5-6.5 and 55-60 degrees C. The activity showed good thermal stability, with half-lives of 90 and 30 min when incubated at 55 and 60 degrees C, respectively. High stability was observed from pH 4.5 to 8.5; more than 90% of the activity remained after 24 h in this pH range.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Branched polyethylene/high-density polyethylene blends (BPE/HDPE) with a wide range of molecular weights, melt flow indexes (MFI), and intrinsic viscosity were prepared using the homogeneous binary catalyst system composed by Ni(alpha-diimine)Cl-2 (1) (alpha-diimine = 1,4-bis(2,6-diisopropylphenyl)-acenaphthenediimine) and {Tp(Ms*)} TiCl3 (2) (Tp(Ms*)=hydridobis(3-mesitylpyrazol-1-yl)(5-mesityl-pyrazol-1-yl)) activated with MAO and/or TIBA in hexane at two different polymerization temperatures (30 and 55 degreesC) and by varying the nickel loading molar fraction (x(Ni)). At all Temperatures, a non-linear correlation between the x(Ni) and the productivity was observed, suggesting the occurrence of a synergistic effect between the nickel and the titanium catalyst precursors, which is more pronounced at 55 degreesC. The molecular weight of the BPE/HDPE blends considerably decreases with increasing Al/M molar ratio. The melt flow indexes (MFI) and intrinsic viscosities (eta) are strongly affected by x(Ni), but the melting temperatures are nearly constant, 132 +/- 3 degreesC. Dynamic mechanical thermal analysis (DMTA) shows the formation of different polymeric materials where the stiffness vanes according, to the x(Ni) and temperature used in the polymerization reaction. The surface morphology of the BPE/HDPE blends studied by scanning electron microscopy (SEM) revealed a low miscibility between the PE phases resulting in the formation of a sandwich structure after etching with o-xylene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over a 3-year period, all colony foundations of the social wasps Polistes versicolor and Polistes simillimus were registered, and the fate and growth of all colonies were followed. P. simillimus exhibited a greater number of colony-founding attempts, while P. versicolor had a larger number of adult colonies. P. simillimus had greater cell numbers and number of adults produced per colony. P. simillimus reutilized only a small percentage of brood cells for adult production for up to 2 generations, while P. versicolor reutilized a large percentage of brood cells for up to 3 generations. Consequently, cell production was higher in P. simillimus. Because of a high rate of adult production and extensive cell production, we suggest that P. simillimus may demonstrate paragynous social organization, and may demonstrate an intermediate form between polygynous and monogynous Vespidae. Paragynous associations may lead to lower predation pressures and a relative independence of adult production on time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of 36 models (22 ocean color models and 14 biogeochemical ocean circulation models (BOGCMs)) that estimate depth-integrated marine net primary productivity (NPP) was assessed by comparing their output to in situ (14)C data at the Bermuda Atlantic Time series Study (BATS) and the Hawaii Ocean Time series (HOT) over nearly two decades. Specifically, skill was assessed based on the models' ability to estimate the observed mean, variability, and trends of NPP. At both sites, more than 90% of the models underestimated mean NPP, with the average bias of the BOGCMs being nearly twice that of the ocean color models. However, the difference in overall skill between the best BOGCM and the best ocean color model at each site was not significant. Between 1989 and 2007, in situ NPP at BATS and HOT increased by an average of nearly 2% per year and was positively correlated to the North Pacific Gyre Oscillation index. The majority of ocean color models produced in situ NPP trends that were closer to the observed trends when chlorophyll-alpha was derived from high-performance liquid chromatography (HPLC), rather than fluorometric or SeaWiFS data. However, this was a function of time such that average trend magnitude was more accurately estimated over longer time periods. Among BOGCMs, only two individual models successfully produced an increasing NPP trend (one model at each site). We caution against the use of models to assess multiannual changes in NPP over short time periods. Ocean color model estimates of NPP trends could improve if more high quality HPLC chlorophyll-alpha time series were available.