982 resultados para HAFNIUM ALPHA-HYDROXYCARBOXYLATES
Resumo:
Unintentionally doped and Si-doped single crystal n-GaN films have been grown on alpha-Al2O3 (0001) substrates by LP-MOCVD. Room temperature photoluminescence measurement showed that besides the bandedges, the spectrum of an undoped sample was a broad deep-level emission band peaking from 2.19 to 2.30eV, whereas the spectrum for a Si-doped sample was composed of a dominant peak of 2.19eV and a shoulder of 2.32eV. At different temperatures, photoconductance buildup and its decay were also observed for both samples.. The likely origins of persistent photoconductivity and yellow luminescence, which might be associated with deep defects inclusive of either Ga vacancy(V-Ga)/Ga vacancy complex induced by impurities or N antisite (N-Ga), will be proposed.
Resumo:
The properties of nuclei belonging to the alpha-decay chain of superheavy element (295)118 have been studied in the framework of axially deformed relativistic mean field (RMF) theory with the parameter set of NL-Z2 in the blocked BCS approximation. Some ground state properties such as binding energies, deformations, and alpha-decay energies Q(alpha) have been obtained and agree well with those from finite-range droplet model (FRDM). The single-particle spectra of nuclei in (295)118 alpha-decay chain show that the shell gaps present obviously nucleon number dependence. The root-mean-square (rms) radii of proton, neutron and matter distributions change slowly from (283)112 to (295)118 but dramatically from (279)110 to (283)112, which may be due to the subshell closure at Z = 110 in (279)110. The alpha-decay half-lives in (295)118 decay chain are evaluated by employing the cluster model and the generalized liquid drop model (GLDM), and the overall agreement is found when they are compared with the known experimental data. The alpha-decay lifetimes obtained from the cluster model are slightly larger than those of GLDM ones. Finally, we predict the alpha-decay half-lives of Z = 118, 116, 114, 112 isotopes using the cluster model and GLDM, which also indicate these two models can corroborate each other in studies on superheavy nuclei. The results from GLDM are always lower than those obtained from the cluster model.
Resumo:
The generalized liquid drop model (GLDM) is extended to the region around deformed shell closure (270)Hs by taking into account the excitation energy EI+ of the residual daughter nucleus and the centrifugal potential energy V-cen(r). The branching ratios of alpha decays from the ground state of a parent nucleus to the ground state 0(+) of its deformed daughter nucleus and to the first excited state 2(+) are calculated in the framework of the GLDM. The results support the proposal that a measurement of alpha spectroscopy is a feasible method to extract information on nuclear deformation of superheavy nuclei around the deformed nucleus (270)Hs.
Resumo:
A measurement of the inelastic component of the key astrophysical resonance in the 14O(α,p)17F reaction for burning and breakout from hot carbon-nitrogen-oxygen (CNO) cycles is reported. The inelastic component is found to be comparable to the ground-state branch and will enhance the 14O(α,p)17F reaction rate. The current results for the reaction rate confirm that the 14O(α,p)17F reaction is unlikely to contribute substantially to burning and breakout from the CNO cycles under novae conditions. The reaction can, however, contribute strongly to the breakout from the hot CNO cycles under the more extreme conditions found in x-ray bursters.
Resumo:
Experimental alpha decay energies and half-lives are investigated systematically to extract alpha particle preformation in heavy nuclei. Formulas for the preformation factors are proposed that can be used to guide microscopic studies on preformation factors and perform accurate calculations of the alpha decay half-lives. There is little evidence for the existence of an island of long stability of superheavy nuclei.
Resumo:
The generalized liquid drop model (GLDM) and the cluster model have been employed to calculate the alpha-decay half-lives of superheavy nuclei (SHN) using the experimental alpha-decay Q values. The results of the cluster model are slightly poorer than those from the GLDM if experimental Q values are used. The prediction powers of these two models with theoretical Q values from Audi et al. (Q(Audi)) and Muntian et al. (Q(M)) have been tested to find that the cluster model with Q(Audi) and Q(M) could provide reliable results for Z > 112 but the GLDM with Q(Audi) for Z <= 112. The half-lives of some still unknown nuclei are predicted by these two models and these results may be useful for future experimental assignment and identification.
Resumo:
Theoretical alpha-decay half-lives of the heaviest nuclei are calculated using the experimental Q value. The barriers in the quasi-molecular shape path is determined within a Generalized Liquid Drop Model (GLDM) and the WKB approximation is used. The results are compared with calculations using the Density-Dependent, M3Y (DDM3Y) effective interaction and the Viola-Seaborg-Sobiczewski (VSS) formulae. The calculations provide consistent estimates for the half-lives of the a decay chains of these superheavy elements. The experimental data stand between the GLDM calculations and VSS ones in the most time.