987 resultados para Genomic library
Resumo:
Forensic examinations of ink have been performed since the beginning of the 20th century. Since the 1960s, the International Ink Library, maintained by the United States Secret Service, has supported those analyses. Until 2009, the search and identification of inks were essentially performed manually. This paper describes the results of a project designed to improve ink samples' analytical and search processes. The project focused on the development of improved standardization procedures to ensure the best possible reproducibility between analyses run on different HPTLC plates. The successful implementation of this new calibration method enabled the development of mathematical algorithms and of a software package to complement the existing ink library.
Resumo:
The zinc finger motifs (Cys2His2) are found in several proteins playing a role in the regulation of transcripton. SmZF1, a Schistosoma mansoni gene encoding a zinc finger protein was initially isolated from an adult worm cDNA library, as a partial cDNA. The full sequence of the gene was obtained by subcloning and sequencing cDNA and genomic fragments. The collated gene sequence is 2181 nt and the complete cDNA sequence is 705 bp containing the full open reading frame of the gene. Analysis of the genome sequence revealed the presence of three introns interrupting the coding region. The open reading frame theoretically encodes a protein of 164 amino acids, with a calculated molecular mass of 18,667Da. The predicted protein contains three zinc finger motifs, usually present in transcription regulatory proteins. PCR amplification with specific primers for the gene allowed for the detection of the target in egg, cercariae, schistosomulum and adult worm cDNA libraries indicating the expression of the mRNA in these life cycle stages of S. mansoni. This pattern of expression suggests the gene plays a role in vital functions of different life cycle stages of the parasite. Future research will be directed to elucidate the functional role of SmZF1.
Resumo:
In the last decade microsatellites have become one of the most useful genetic markers used in a large number of organisms due to their abundance and high level of polymorphism. Microsatellites have been used for individual identification, paternity tests, forensic studies and population genetics. Data on microsatellite abundance comes preferentially from microsatellite enriched libraries and DNA sequence databases. We have conducted a search in GenBank of more than 16,000 Schistosoma mansoni ESTs and 42,000 BAC sequences. In addition, we obtained 300 sequences from CA and AT microsatellite enriched genomic libraries. The sequences were searched for simple repeats using the RepeatMasker software. Of 16,022 ESTs, we detected 481 (3%) sequences that contained 622 microsatellites (434 perfect, 164 imperfect and 24 compounds). Of the 481 ESTs, 194 were grouped in 63 clusters containing 2 to 15 ESTs per cluster. Polymorphisms were observed in 16 clusters. The 287 remaining ESTs were orphan sequences. Of the 42,017 BAC end sequences, 1,598 (3.8%) contained microsatellites (2,335 perfect, 287 imperfect and 79 compounds). The 1,598 BAC end sequences 80 were grouped into 17 clusters containing 3 to 17 BAC end sequences per cluster. Microsatellites were present in 67 out of 300 sequences from microsatellite enriched libraries (55 perfect, 38 imperfect and 15 compounds). From all of the observed loci 55 were selected for having the longest perfect repeats and flanking regions that allowed the design of primers for PCR amplification. Additionally we describe two new polymorphic microsatellite loci.
Resumo:
The human nuclear protein RbAp48 is a member of the tryptophan/aspartate (WD) repeat family, which binds to the retinoblastoma (Rb) protein. It also corresponds to the smallest subunit of the chromatin assembly factor and is able to bind to the helix 1 of histone H4, taking it to the DNA in replication. A cDNA homologous to the human gene RbAp48 was isolated from a Schistosoma mansoni adult worm library and named SmRbAp48. The full length sequence of SmRbAp48 cDNA is 1036 bp long, encoding a protein of 308 amino acids. The transcript of SmRbAp48 was detected in egg, cercariae and schistosomulum stages. The protein shows 84% similarity with the human RbAp48, possessing four WD repeats on its C-terminus. A hypothetical tridimensional structure for the SmRbAp48 C-terminal domain was constructed by computational molecular modeling using the b-subunit of the G protein as a model. To further verify a possible interaction between SmRbAp48 and S. mansoni histone H4, the histone H4 gene was amplified from adult worm genomic DNA using degenerated primers. The gene fragment of SmH4 is 294 bp long, encoding a protein of 98 amino acids which is 100% identical to histone H4 from Drosophila melanogaster.
Resumo:
Expression of human leucocyte antigen (HLA) Class I molecules is essential for the recognition of malignant melanoma (MM) cells by CD8(+) T lymphocytes. A complete or partial loss of HLA Class I molecules is a potent strategy for MM cells to escape from immunosurveillance. In 2 out of 55 melanoma cell cultures we identified a complete phenotypic loss of HLA allospecificities. Both patients have been treated unsuccessfully with HLA-A2 peptides. To identify the reasons underlying the loss of single HLA-A allospecificities, we searched for genomic alterations at the locus for HLA Class I alpha-chain on chromosome 6 in melanoma cell cultures established from 2 selected patients with MM in advanced stage. This deficiency was associated with alterations of HLA-A2 gene sequences as determined by polymerase chain reaction-sequence specific primers (PCR-SSP). Karyotyping revealed a chromosomal loss in Patient 1, whereas melanoma cell cultures established from Patient 2 displayed 2 copies of chromosome 6. Loss of heterozygosity (LOH) using markers located around position 6p21 was detected in both cases. By applying group-specific primer-mixes spanning the 5'-flanking region of the HLA-A2 gene locus the relevant region was amplified by PCR and subsequent sequencing allowed alignment with the known HLA Class I reference sequences. Functional assays using HLA-A2-restricted cytotoxic T-cell clones were performed in HLA-A2 deficient MM cultures and revealed a drastically reduced susceptibility to CTL lysis in HLA-A2 negative cells. We could document the occurrence of selective HLA-A2 deficiencies in cultured advanced-stage melanoma metastases and identify their molecular causes as genomic alterations within the HLA-A gene locus.
Resumo:
DNA methylation has an important impact on normal cell physiology, thus any defects in this mechanism may be related to the development of various diseases In this project we are interested in identifying epigeneticaliy modified genes, in general controlled by processes related to the DNA methylation, by means of a new strategy combining protomic and genomic analyses. First, the two Dimensional-Difference Gel Electrophoresis (2-DIGE) protein analyses of extracts obtained from HCT-116 wt and double knockout for DNMT1 and DNMT3b (DKO) cells revealed 34 proteins overexpressed in the condition of DNMTs depletion. From five genes with higher transcript lavels in DKO cells, comparing with HCT-116 wt. oniy AKR1B1, UCHLl and VIM are melhylated in HCT-116. As expected. the DNA methvlation 1s lost in DKO cells. The rneth,vl ation of VIM and UCHLl promoters in some cancer samples has already been repaired, thus further studies has been focused on AKRlBI. AKR1B1 expression due lo DNA methyiaton of promoter region seems to occur specilfically in the colon cancer cell Iines. which was confirmed in the DNA rnethylation status and expression analyses. performed on 32 different cancer cell lines (including colon, breast, lymphoma, leukemia, neuroblastoma, glioma and lung cancer cell Iines) as well as normal colon and normal lymphocytes samples. AKRIBI expression after treatments with DNA demethvlating agent (AZA) was rescued in 5 coloncancer cell lines (including genetic regulation of the candidate gene. The methylation status of the rest of the genes identified in proteomic analysis was checked by methylation specific PCR (MSP) experiment and all appeared to be unmethylated. The similar research has been done also bv means of Mecp2-null mouse model For 14 selected candidate genes the analyses of expression leveis, methylation Status and MeCP2 interaction with promoters are currently being performed.
Resumo:
Samples containing highly unbalanced DNA mixtures from two individuals commonly occur both in forensic mixed stains and in peripheral blood DNA microchimerism induced by pregnancy or following organ transplant. Because of PCR amplification bias, the genetic identification of a DNA that contributes trace amounts to a mixed sample represents a tremendous challenge. This means that standard genetic markers, namely microsatellites, also referred as short tandem repeats (STR), and single-nucleotide polymorphism (SNP) have limited power in addressing common questions of forensic and medical genetics. To address this issue, we developed a molecular marker, named DIP-STR that relies on pairing deletion-insertion polymorphisms (DIP) with STR. This novel analytical approach allows for the unambiguous genotyping of a minor component in the presence of a major component, where DIP-STR genotypes of the minor were successfully procured at ratios up to 1:1,000. The compound nature of this marker generates a high level of polymorphism that is suitable for identity testing. Here, we demonstrate the power of the DIP-STR approach on an initial set of nine markers surveyed in a Swiss population. Finally, we discuss the limitations and potential applications of our new system including preliminary tests on clinical samples and estimates of their performance on simulated DNA mixtures.
Resumo:
SEN virus (SENV) is a circular, single stranded DNA virus that has been first characterized in the serum of a human immunodeficiency virus type 1 (HIV-1)-infected patient. Eight genotypes of SENV (A-H) have been identified and further recognized as variants of TT virus (TTV) in the family Circoviridae. Here we describe the first genomic characterization of a SENV isolate (5-A) from South America. Using 'universal' primers, able to amplify most, if not all, TTV/SENV genotypes, a segment of > 3 kb was amplified by polymerase chain reaction from the serum of an HIV-1 infected patient. The amplicon was cloned and a 3087-nucleotide sequence was determined, that showed a high (85%) homology with the sequence of the Italian isolate SENV-F. Proteins encoded by open reading frames (ORFs) 1 to 4 consisted of 758, 129, 276, and 267 amino acids, respectively. By phylogenetic analysis, isolate 5-A was classified into TTV genotype 19 (phylogenetic group 3), together with SENV-F and TTV isolate SAa-38.
Resumo:
Understanding the genomic basis of evolutionary adaptation requires insight into the molecular basis underlying phenotypic variation. However, even changes in molecular pathways associated with extreme variation, gains and losses of specific phenotypes, remain largely uncharacterized. Here, we investigate the large interspecific differences in the ability to survive infection by parasitoids across 11 Drosophila species and identify genomic changes associated with gains and losses of parasitoid resistance. We show that a cellular immune defense, encapsulation, and the production of a specialized blood cell, lamellocytes, are restricted to a sublineage of Drosophila, but that encapsulation is absent in one species of this sublineage, Drosophila sechellia. Our comparative analyses of hemopoiesis pathway genes and of genes differentially expressed during the encapsulation response revealed that hemopoiesis-associated genes are highly conserved and present in all species independently of their resistance. In contrast, 11 genes that are differentially expressed during the response to parasitoids are novel genes, specific to the Drosophila sublineage capable of lamellocyte-mediated encapsulation. These novel genes, which are predominantly expressed in hemocytes, arose via duplications, whereby five of them also showed signatures of positive selection, as expected if they were recruited for new functions. Three of these novel genes further showed large-scale and presumably loss-of-function sequence changes in D. sechellia, consistent with the loss of resistance in this species. In combination, these convergent lines of evidence suggest that co-option of duplicated genes in existing pathways and subsequent neofunctionalization are likely to have contributed to the evolution of the lamellocyte-mediated encapsulation in Drosophila.
Resumo:
BACKGROUND: After age, sex is the most important risk factor for coronary artery disease (CAD). The mechanism through which women are protected from CAD is still largely unknown, but the observed sex difference suggests the involvement of the reproductive steroid hormone signaling system. Genetic association studies of the gene-encoding Estrogen Receptor α (ESR1) have shown conflicting results, although only a limited range of variation in the gene has been investigated. METHODS AND RESULTS: We exploited information made available by advanced new methods and resources in complex disease genetics to revisit the question of ESR1's role in risk of CAD. We performed a meta-analysis of 14 genome-wide association studies (CARDIoGRAM discovery analysis, N=≈87,000) to search for population-wide and sex-specific associations between CAD risk and common genetic variants throughout the coding, noncoding, and flanking regions of ESR1. In addition to samples from the MIGen (N=≈6000), WTCCC (N=≈7400), and Framingham (N=≈3700) studies, we extended this search to a larger number of common and uncommon variants by imputation into a panel of haplotypes constructed using data from the 1000 Genomes Project. Despite the widespread expression of ERα in vascular tissues, we found no evidence for involvement of common or low-frequency genetic variation throughout the ESR1 gene in modifying risk of CAD, either in the general population or as a function of sex. CONCLUSIONS: We suggest that future research on the genetic basis of sex-related differences in CAD risk should initially prioritize other genes in the reproductive steroid hormone biosynthesis system.
Resumo:
Ants are some of the most abundant and familiar animals on Earth, and they play vital roles in most terrestrial ecosystems. Although all ants are eusocial, and display a variety of complex and fascinating behaviors, few genomic resources exist for them. Here, we report the draft genome sequence of a particularly widespread and well-studied species, the invasive Argentine ant (Linepithema humile), which was accomplished using a combination of 454 (Roche) and Illumina sequencing and community-based funding rather than federal grant support. Manual annotation of >1,000 genes from a variety of different gene families and functional classes reveals unique features of the Argentine ant's biology, as well as similarities to Apis mellifera and Nasonia vitripennis. Distinctive features of the Argentine ant genome include remarkable expansions of gustatory (116 genes) and odorant receptors (367 genes), an abundance of cytochrome P450 genes (>110), lineage-specific expansions of yellow/major royal jelly proteins and desaturases, and complete CpG DNA methylation and RNAi toolkits. The Argentine ant genome contains fewer immune genes than Drosophila and Tribolium, which may reflect the prominent role played by behavioral and chemical suppression of pathogens. Analysis of the ratio of observed to expected CpG nucleotides for genes in the reproductive development and apoptosis pathways suggests higher levels of methylation than in the genome overall. The resources provided by this genome sequence will offer an abundance of tools for researchers seeking to illuminate the fascinating biology of this emerging model organism.
Resumo:
Genomic islands, large potentially mobile regions of bacterial chromosomes, are a major contributor to bacteria evolution. Here, we investigated the fitness cost and phenotypic differences between the bacterium Pseudomonas aeruginosa PAO1 and a derivative carrying one integrated copy of the clc element, a 103-kb genomic island [and integrative and conjugative element (ICE)] originating in Pseudomonas sp. strain B13 and a close relative of genomic islands found in clinical and environmental isolates of P. aeruginosa. By using a combination of whole genome transcriptome profiling, phenotypic arrays, competition experiments, and biofilm formation studies, only few differences became apparent, such as reduced biofilm growth and fourfold stationary phase repression of genes involved in acetoin metabolism in PAO1 containing the clc element. In contrast, PAO1 carrying the clc element acquired the capacity to grow on 3-chlorobenzoate and 2-aminophenol as sole carbon and energy substrates. No fitness loss >1% was detectable in competition experiments between PAO1 and PAO1 carrying the clc element. The genes from the clc element were not silent in PAO1, and excision was observed, although transfer of clc from PAO1 to other recipient bacteria was reduced by two orders of magnitude. Our results indicate that newly acquired mobile DNA not necessarily invoke an important fitness cost on their host. Absence of immediate detriment to the host may have contributed to the wide distribution of genomic islands like clc in bacterial genomes
Resumo:
To provide a novel resource for analysis of the genome of Biomphalaria glabrata, members of the international Biomphalaria glabrata Genome Initiative (biology.unm.edu/biomphalaria-genome.html), working with the Arizona Genomics Institute (AGI) and supported by the National Human Genome Research Institute (NHGRI), produced a high quality bacterial artificial chromosome (BAC) library. The BB02 strain B. glabrata, a field isolate (Belo Horizonte, Minas Gerais, Brasil) that is susceptible to several strains of Schistosoma mansoni, was selfed for two generations to reduce haplotype diversity in the offspring. High molecular weight DNA was isolated from ovotestes of 40 snails, partially digested with HindIII, and ligated into pAGIBAC1 vector. The resulting B. glabrata BAC library (BG_BBa) consists of 61824 clones (136.3 kb average insert size) and provides 9.05 × coverage of the 931 Mb genome. Probing with single/low copy number genes from B. glabrata and fingerprinting of selected BAC clones indicated that the BAC library sufficiently represents the gene complement. BAC end sequence data (514 reads, 299860 nt) indicated that the genome of B. glabrata contains ~ 63% AT, and disclosed several novel genes, transposable elements, and groups of high frequency sequence elements. This BG_BBa BAC library, available from AGI at cost to the research community, gains in relevance because BB02 strain B. glabrata is targeted whole genome sequencing by NHGRI.
Resumo:
Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explained one-fifth of the heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated ∼2,000, ∼3,700 and ∼9,500 SNPs explained ∼21%, ∼24% and ∼29% of phenotypic variance. Furthermore, all common variants together captured 60% of heritability. The 697 variants clustered in 423 loci were enriched for genes, pathways and tissue types known to be involved in growth and together implicated genes and pathways not highlighted in earlier efforts, such as signaling by fibroblast growth factors, WNT/β-catenin and chondroitin sulfate-related genes. We identified several genes and pathways not previously connected with human skeletal growth, including mTOR, osteoglycin and binding of hyaluronic acid. Our results indicate a genetic architecture for human height that is characterized by a very large but finite number (thousands) of causal variants.