962 resultados para Genome wide mapping


Relevância:

90.00% 90.00%

Publicador:

Resumo:

El trastorno de hiperactividad y déficit de atención (THDA), es definido clínicamente como una alteración en el comportamiento, caracterizada por inatención, hiperactividad e impulsividad. Estos aspectos son clasificados en tres subtipos, que son: Inatento, hiperactivo impulsivo y mixto. Clínicamente se describe un espectro amplio que incluye desordenes académicos, trastornos de aprendizaje, déficit cognitivo, trastornos de conducta, personalidad antisocial, pobres relaciones interpersonales y aumento de la ansiedad, que pueden continuar hasta la adultez. A nivel global se ha estimado una prevalencia entre el 1% y el 22%, con amplias variaciones, dadas por la edad, procedencia y características sociales. En Colombia, se han realizado estudios en Bogotá y Antioquia, que han permitido establecer una prevalencia del 5% y 15%, respectivamente. La causa específica no ha sido totalmente esclarecida, sin embargo se ha calculado una heredabilidad cercana al 80% en algunas poblaciones, demostrando el papel fundamental de la genética en la etiología de la enfermedad. Los factores genéticos involucrados se relacionan con cambios neuroquímicos de los sistemas dopaminérgicos, serotoninérgicos y noradrenérgicos, particularmente en los sistemas frontales subcorticales, corteza cerebral prefrontal, en las regiones ventral, medial, dorsolateral y la porción anterior del cíngulo. Basados en los datos de estudios previos que sugieren una herencia poligénica multifactorial, se han realizado esfuerzos continuos en la búsqueda de genes candidatos, a través de diferentes estrategias. Particularmente los receptores Alfa 2 adrenérgicos, se encuentran en la corteza cerebral, cumpliendo funciones de asociación, memoria y es el sitio de acción de fármacos utilizados comúnmente en el tratamiento de este trastorno, siendo esta la principal evidencia de la asociación de este receptor con el desarrollo del THDA. Hasta la fecha se han descrito más de 80 polimorfismos en el gen (ADRA2A), algunos de los cuales se han asociado con la entidad. Sin embargo, los resultados son controversiales y varían según la metodología diagnóstica empleada y la población estudiada, antecedentes y comorbilidades. Este trabajo pretende establecer si las variaciones en la secuencia codificante del gen ADRA2A, podrían relacionarse con el fenotipo del Trastorno de Hiperactividad y el Déficit de Atención.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Avian genomes are small and streamlined compared with those of other amniotes by virtue of having fewer repetitive elements and less non-coding DNA(1,2). This condition has been suggested to represent a key adaptation for flight in birds, by reducing the metabolic costs associated with having large genome and cell sizes(3,4). However, the evolution of genome architecture in birds, or any other lineage, is difficult to study because genomic information is often absent for long-extinct relatives. Here we use a novel bayesian comparative method to show that bone-cell size correlates well with genome size in extant vertebrates, and hence use this relationship to estimate the genome sizes of 31 species of extinct dinosaur, including several species of extinct birds. Our results indicate that the small genomes typically associated with avian flight evolved in the saurischian dinosaur lineage between 230 and 250 million years ago, long before this lineage gave rise to the first birds. By comparison, ornithischian dinosaurs are inferred to have had much larger genomes, which were probably typical for ancestral Dinosauria. Using comparative genomic data, we estimate that genome-wide interspersed mobile elements, a class of repetitive DNA, comprised 5 - 12% of the total genome size in the saurischian dinosaur lineage, but was 7 - 19% of total genome size in ornithischian dinosaurs, suggesting that repetitive elements became less active in the saurischian lineage. These genomic characteristics should be added to the list of attributes previously considered avian but now thought to have arisen in non-avian dinosaurs, such as feathers(5), pulmonary innovations 6, and parental care and nesting

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A recently emerging bleeding canker disease, caused by Pseudomonas syringae pathovar aesculi (Pae), is threatening European horse chestnut in northwest Europe. Very little is known about the origin and biology of this new disease. We used the nucleotide sequences of seven commonly used marker genes to investigate the phylogeny of three strains isolated recently from bleeding stem cankers on European horse chestnut in Britain (E-Pae). On the basis of these sequences alone, the E-Pae strains were identical to the Pae type-strain (I-Pae), isolated from leaf spots on Indian horse chestnut in India in 1969. The phylogenetic analyses also showed that Pae belongs to a distinct clade of P. syringae pathovars adapted to woody hosts. We generated genome-wide Illumina sequence data from the three E-Pae strains and one strain of I-Pae. Comparative genomic analyses revealed pathovar-specific genomic regions in Pae potentially implicated in virulence on a tree host, including genes for the catabolism of plant-derived aromatic compounds and enterobactin synthesis. Several gene clusters displayed intra-pathovar variation, including those encoding type IV secretion, a novel fatty acid biosynthesis pathway and a sucrose uptake pathway. Rates of single nucleotide polymorphisms in the four Pae genomes indicate that the three E-Pae strains diverged from each other much more recently than they diverged from I-Pae. The very low genetic diversity among the three geographically distinct E-Pae strains suggests that they originate from a single, recent introduction into Britain, thus highlighting the serious environmental risks posed by the spread of an exotic plant pathogenic bacterium to a new geographic location. The genomic regions in Pae that are absent from other P. syringae pathovars that infect herbaceous hosts may represent candidate genetic adaptations to infection of the woody parts of the tree.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abstract Background: The amount and structure of genetic diversity in dessert apple germplasm conserved at a European level is mostly unknown, since all diversity studies conducted in Europe until now have been performed on regional or national collections. Here, we applied a common set of 16 SSR markers to genotype more than 2,400 accessions across 14 collections representing three broad European geographic regions (North+East, West and South) with the aim to analyze the extent, distribution and structure of variation in the apple genetic resources in Europe. Results: A Bayesian model-based clustering approach showed that diversity was organized in three groups, although these were only moderately differentiated (FST=0.031). A nested Bayesian clustering approach allowed identification of subgroups which revealed internal patterns of substructure within the groups, allowing a finer delineation of the variation into eight subgroups (FST=0.044). The first level of stratification revealed an asymmetric division of the germplasm among the three groups, and a clear association was found with the geographical regions of origin of the cultivars. The substructure revealed clear partitioning of genetic groups among countries, but also interesting associations between subgroups and breeding purposes of recent cultivars or particular usage such as cider production. Additional parentage analyses allowed us to identify both putative parents of more than 40 old and/or local cultivars giving interesting insights in the pedigree of some emblematic cultivars. Conclusions: The variation found at group and sub-group levels may reflect a combination of historical processes of migration/selection and adaptive factors to diverse agricultural environments that, together with genetic drift, have resulted in extensive genetic variation but limited population structure. The European dessert apple germplasm represents an important source of genetic diversity with a strong historical and patrimonial value. The present work thus constitutes a decisive step in the field of conservation genetics. Moreover, the obtained data can be used for defining a European apple core collection useful for further identification of genomic regions associated with commercially important horticultural traits in apple through genome-wide association studies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

With the aim of determining the genetic basis of metabolic regulation in tomato fruit, we constructed a detailed physical map of genomic regions spanning previously described metabolic quantitative trait loci of a Solanum pennellii introgression line population. Two genomic libraries from S. pennellii were screened with 104 colocated markers from five selected genomic regions, and a total of 614 bacterial artificial chromosome (BAC)/cosmids were identified as seed clones. Integration of sequence data with the genetic and physical maps of Solanum lycopersicum facilitated the anchoring of 374 of these BAC/cosmid clones. The analysis of this information resulted in a genome-wide map of a nondomesticated plant species and covers 10% of the physical distance of the selected regions corresponding to approximately 1% of the wild tomato genome. Comparative analyses revealed that S. pennellii and domesticated tomato genomes can be considered as largely colinear. A total of 1,238,705 bp from both BAC/cosmid ends and nine large insert clones were sequenced, annotated, and functionally categorized. The sequence data allowed the evaluation of the level of polymorphism between the wild and cultivated tomato species. An exhaustive microsynteny analysis allowed us to estimate the divergence date of S. pennellii and S. lycopersicum at 2.7 million years ago. The combined results serve as a reference for comparative studies both at the macrosyntenic and microsyntenic levels. They also provide a valuable tool for fine-mapping of quantitative trait loci in tomato. Furthermore, they will contribute to a deeper understanding of the regulatory factors underpinning metabolism and hence defining crop chemical composition.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Medicina Veterinária - FCAV

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The publication of the human genome sequence in 2001 was a major step forward in knowledge necessary to understand the variations between individuals. For farmed species, genomic sequence information will facilitate the selection of animals optimised to live, and be productive, in particular environments. The availability of cattle genome sequence has allowed the breeding industry to take the first steps towards predicting phenotypes from genotypes by estimating a genomic breeding value (gEBV) for bulls using genome-wide DNA markers. The sequencing of the buffalo genome and creation of a panel of DNA markers has created the opportunity to apply molecular selection approaches for this species.The genomes of several buffalo of different breeds were sequenced and aligned with the bovine genome, which facilitated the identification of millions of sequence variants in the buffalo genomes. Based on frequencies of variants within and among buffalo breeds, and their distribution across the genome compared with the bovine genome, 90,000 putative single nucleotide polymorphisms (SNP) were selected to create an Axiom (R) Buffalo Genotyping Array 90K. This SNP Chip was tested in buffalo populations from Italy and Brazil and found to have at least 75% high quality and polymorphic markers in these populations. The 90K SNP chip was then used to investigate the structure of buffalo populations, and to localise the variations having a major effect on milk production.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Rapid growth in broilers is associated with susceptibility to metabolic disorders such as pulmonary hypertension syndrome (ascites) and sudden death. This study describes a genome search for QTL associated with relative weight of cardio respiratory and metabolically important organs (heart, lungs, liver and gizzard), and hematocrit value in a Brazilian broiler-layer cross. QTL with similar or different effects across sexes were investigated. At 42 days of age after fasted for 6 h, the F2 chickens were weighed and slaughtered. Weights and percentages of the weight relative to BW42 of gizzard, heart, lungs, liver and hematocrit were used in the QTL search. Parental, F1 and F2 individuals were genotyped with 128 genetic markers (127 microsatellites and 1 SNP) covering 22 linkage groups. QTL mapping analyses were carried out using mixed models. A total of 11 genome-wide significant QTL and five suggestive linkages were mapped. Thus, genome-wide significant QTL with similar effects across sexes were mapped to GGA2, 4 and 14 for heart weight, and to GGA2, 8 and 12 for gizzard %. Additionally, five genome-wide significant QTL with different effects across sexes were mapped to GGA 8, 19 and 26 for heart weight; GGA26 for heart % and GGA3 for hematocrit value. Five QTL were detected in chromosomal regions where QTL for similar traits were previously mapped in other F2 chicken populations. Seven novel genome-wide significant QTL are reported here, and 21 positional candidate genes in QTL regions were identified.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To better understand agronomic and end-use quality in wheat (Triticum aestivum L.) we developed a population containing 154 F6:8 recombinant inbred lines (RILs) from the cross TAM107-R7/Arlin. The parental lines and RILs were phenotyped at six environments in Nebraska and differed for resistance to Wheat soilborne mosaic virus (WSBMV), morphological, agronomic, and end-use quality traits. Additionally, a 2300 cM genome-wide linkage map was created for quantitative trait loci (QTL) analysis. Based on our results across multiple environments, the best RILs could be used for cultivar improvement. The population and marker data are publicly available for interested researchers for future research. The population was used to determine the effect of WSBMV on agronomic and end-use quality and for the mapping of a resistance locus. Results from two infected environments showed that all but two agronomic traits were significantly affected by the disease. Specifically, the disease reduced grain yield by 30% of susceptible RILs and they flowered 5 d later and were 11 cm shorter. End-use quality traits were not negatively affected but flour protein content was increased in susceptible RILs. The resistance locus SbmTmr1 mapped to 27.1 cM near marker wPt-5870 on chromosome 5DL using ELISA data. Finally, we investigated how WSBMV affected QTL detection in the population. QTLs were mapped at two WSBMV infected environments, four uninfected environments, and in the resistant and susceptible RIL subpopulations in the infected environments. Fifty-two significant (LOD≥3) QTLs were mapped in RILs at uninfected environments. Many of the QTLs were pleiotropic or closely linked at 6 chromosomal regions. Forty-seven QTLs were mapped in RILs at WSBMV infected environments. Comparisons between uninfected and infected environments identified 20 common QTLs and 21 environmentally specific QTLs. Finally, 24 QTLs were determined to be affected by WSBMV by comparing the subpopulations in QTL analyses within the same environment. The comparisons were statistically validated using marker by disease interactions. These results showed that QTLs can be affected by WSBMV and careful interpretation of QTL results is needed where biotic stresses are present. Finally, beneficial QTLs not affected by WSBMV or the environment are candidates for marker-assisted selection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: The purpose of this study was to estimate the genetic influences on the initiation of cigarette smoking, the persistence, quantity and age-at-onset of regular cigarette use in Brazilian families. Methods: The data set consisted of 1,694 individuals enrolled in the Baependi Heart Study. The heritability and the heterogeneity in genetic and environmental variance components by gender were estimated from variance components approaches, using the SOLAR (Sequential Oligogenic Linkage Analysis Routines) computer package. The mixed-effects Cox model was used for the genetic analysis of the age-at onset of regular cigarette use. Results: The heritability estimates were high (> 50%) for smoking initiation and were intermediate, ranging from 23.4 to 31.9%, for smoking persistence and quantity. Significant evidence for heterogeneity in variance components by gender was observed for smoking initiation and age-at-onset of regular cigarette use. Genetic factors play an important role in the interindividual variation of these phenotypes in females, while in males there is a predominant environmental component, which could be explained by greater social influences in the initiation of tobacco use. Conclusions: Significant heritabilities were observed in smoking phenotypes for both males and females from the Brazilian population. These data add to the literature and are concordant with the notion of significant biological determination in smoking behavior. Samples from the Baependi Heart Study may be valuable for the mapping of genetic loci that modulate this complex biological trait.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Genome-wide association studies have failed to establish common variant risk for the majority of common human diseases. The underlying reasons for this failure are explained by recent studies of resequencing and comparison of over 1200 human genomes and 10 000 exomes, together with the delineation of DNA methylation patterns (epigenome) and full characterization of coding and noncoding RNAs (transcriptome) being transcribed. These studies have provided the most comprehensive catalogues of functional elements and genetic variants that are now available for global integrative analysis and experimental validation in prospective cohort studies. With these datasets, researchers will have unparalleled opportunities for the alignment, mining, and testing of hypotheses for the roles of specific genetic variants, including copy number variations, single nucleotide polymorphisms, and indels as the cause of specific phenotypes and diseases. Through the use of next-generation sequencing technologies for genotyping and standardized ontological annotation to systematically analyze the effects of genomic variation on humans and model organism phenotypes, we will be able to find candidate genes and new clues for disease’s etiology and treatment. This article describes essential concepts in genetics and genomic technologies as well as the emerging computational framework to comprehensively search websites and platforms available for the analysis and interpretation of genomic data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To identify the regions of recurrent copy number abnormality in osteosarcoma and their effect on gene expression, we performed an integrated genome-wide high-resolution array CGH (aCGH) and gene expression profiling analysis on 40 human OS tissues and 12 OS cell lines. This analysis identified several recurrent chromosome regions that contain genes that show a gene dosage effect on gene expression. A further search, performed on those genes that were over-expressed and localized in the frequently amplified chromosomal regions, greatly reduced the number of candidate genes while their characterization using gene ontology (GO) analysis suggests the importance of the deregulation of the G1-to-S phase in the development of the disease. We also identified frequent deletions on 3q in the vicinity of LSAMP and performed a fine mapping analysis of the breakpoints. We precisely mapped the breakpoints in several instances and demonstrated that the majority do not involve the LSAMP gene itself, and that they appear to form by a process of non-homologous end joining. In addition, aCGH analysis revealed frequent gains of IGF1R that were highly correlated with its protein level. Blockade of IGF1R in OS cell lines with high copy number gain led to growth inhibition suggesting that IGF1R may be a viable drug target in OS, particularly in patients with copy number driven overexpression of this receptor.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Animal neocentromeres are defined as ectopic centromeres that have formed in non-centromeric locations and avoid some of the features, like the DNA satellite sequence, that normally characterize canonical centromeres. Despite this, they are stable functional centromeres inherited through generations. The only existence of neocentromeres provide convincing evidence that centromere specification is determined by epigenetic rather than sequence-specific mechanisms. For all this reasons, we used them as simplified models to investigate the molecular mechanisms that underlay the formation and the maintenance of functional centromeres. We collected human cell lines carrying neocentromeres in different positions. To investigate the region involved in the process at the DNA sequence level we applied a recent technology that integrates Chromatin Immuno-Precipitation and DNA microarrays (ChIP-on-chip) using rabbit polyclonal antibodies directed against CENP-A or CENP-C human centromeric proteins. These DNA binding-proteins are required for kinetochore function and are exclusively targeted to functional centromeres. Thus, the immunoprecipitation of DNA bound by these proteins allows the isolation of centromeric sequences, including those of the neocentromeres. Neocentromeres arise even in protein-coding genes region. We further analyzed if the increased scaffold attachment sites and the corresponding tighter chromatin of the region involved in the neocentromerization process still were permissive or not to transcription of within encoded genes. Centromere repositioning is a phenomenon in which a neocentromere arisen without altering the gene order, followed by the inactivation of the canonical centromere, becomes fixed in population. It is a process of chromosome rearrangement fundamental in evolution, at the bases of speciation. The repeat-free region where the neocentromere initially forms, progressively acquires extended arrays of satellite tandem repeats that may contribute to its functional stability. In this view our attention focalized to the repositioned horse ECA11 centromere. ChIP-on-chip analysis was used to define the region involved and SNPs studies, mapping within the region involved into neocentromerization, were carried on. We have been able to describe the structural polymorphism of the chromosome 11 centromeric domain of Caballus population. That polymorphism was seen even between homologues chromosome of the same cells. That discovery was the first described ever. Genomic plasticity had a fundamental role in evolution. Centromeres are not static packaged region of genomes. The key question that fascinates biologists is to understand how that centromere plasticity could be combined to the stability and maintenance of centromeric function. Starting from the epigenetic point of view that underlies centromere formation, we decided to analyze the RNA content of centromeric chromatin. RNA, as well as secondary chemically modifications that involve both histones and DNA, represents a good candidate to guide somehow the centromere formation and maintenance. Many observations suggest that transcription of centromeric DNA or of other non-coding RNAs could affect centromere formation. To date has been no thorough investigation addressing the identity of the chromatin-associated RNAs (CARs) on a global scale. This prompted us to develop techniques to identify CARs in a genome-wide approach using high-throughput genomic platforms. The future goal of this study will be to focalize the attention on what strictly happens specifically inside centromere chromatin.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The goal of many plant scientists’ research is to explain natural phenotypic variation in term of simple changes in DNA sequence. DNA-based molecular markers are extensively used for the construction of genome-wide molecular maps and to perform genetic analysis for simple and complex traits. The PhD thesis was divided into two main research lines according to the different approaches adopted. The first research line is to analyze the genetic diversity in an Italian apple germplasm collection for the identification of markers tightly linked to targeted genes by an association genetic method. This made it possible to identify synomym and homonym accessions and triploids. The fruit red skin color trait has been used to test the reliability of the genetic approaches in this species. The second line is related to the development of molecular markers closely linked to the Rvi13 and Rvi5 scab resistance genes, previously mapped on apple’s chromosome 10 and 17 respectively by using the traditional linkage mapping method. Both region have been fine-mapped with various type of markers that could be used for marker-assisted selection in future breeding programs and to isolate the two resistance genes.