862 resultados para FINITE SETS
Resumo:
We investigate under which dynamical conditions the Julia set of a quadratic rational map is a Sierpiński curve.
Resumo:
As modern molecular biology moves towards the analysis of biological systems as opposed to their individual components, the need for appropriate mathematical and computational techniques for understanding the dynamics and structure of such systems is becoming more pressing. For example, the modeling of biochemical systems using ordinary differential equations (ODEs) based on high-throughput, time-dense profiles is becoming more common-place, which is necessitating the development of improved techniques to estimate model parameters from such data. Due to the high dimensionality of this estimation problem, straight-forward optimization strategies rarely produce correct parameter values, and hence current methods tend to utilize genetic/evolutionary algorithms to perform non-linear parameter fitting. Here, we describe a completely deterministic approach, which is based on interval analysis. This allows us to examine entire sets of parameters, and thus to exhaust the global search within a finite number of steps. In particular, we show how our method may be applied to a generic class of ODEs used for modeling biochemical systems called Generalized Mass Action Models (GMAs). In addition, we show that for GMAs our method is amenable to the technique in interval arithmetic called constraint propagation, which allows great improvement of its efficiency. To illustrate the applicability of our method we apply it to some networks of biochemical reactions appearing in the literature, showing in particular that, in addition to estimating system parameters in the absence of noise, our method may also be used to recover the topology of these networks.
On the evolution of harming and recognition in finite panmictic and infinite structured populations.
Resumo:
Natural selection may favor two very different types of social behaviors that have costs in vital rates (fecundity and/or survival) to the actor: helping behaviors, which increase the vital rates of recipients, and harming behaviors, which reduce the vital rates of recipients. Although social evolutionary theory has mainly dealt with helping behaviors, competition for limited resources creates ecological conditions in which an actor may benefit from expressing behaviors that reduce the vital rates of neighbors. This may occur if the reduction in vital rates decreases the intensity of competition experienced by the actor or that experienced by its offspring. Here, we explore the joint evolution of neutral recognition markers and marker-based costly conditional harming whereby actors express harming, conditional on actor and recipient bearing different conspicuous markers. We do so for two complementary demographic scenarios: finite panmictic and infinite structured populations. We find that marker-based conditional harming can evolve under a large range of recombination rates and group sizes under both finite panmictic and infinite structured populations. A direct comparison with results for the evolution of marker-based conditional helping reveals that, if everything else is equal, marker-based conditional harming is often more likely to evolve than marker-based conditional helping.
Resumo:
Electrical deep brain stimulation (DBS) is an efficient method to treat movement disorders. Many models of DBS, based mostly on finite elements, have recently been proposed to better understand the interaction between the electrical stimulation and the brain tissues. In monopolar DBS, clinically widely used, the implanted pulse generator (IPG) is used as reference electrode (RE). In this paper, the influence of the RE model of monopolar DBS is investigated. For that purpose, a finite element model of the full electric loop including the head, the neck and the superior chest is used. Head, neck and superior chest are made of simple structures such as parallelepipeds and cylinders. The tissues surrounding the electrode are accurately modelled from data provided by the diffusion tensor magnetic resonance imaging (DT-MRI). Three different configurations of RE are compared with a commonly used model of reduced size. The electrical impedance seen by the DBS system and the potential distribution are computed for each model. Moreover, axons are modelled to compute the area of tissue activated by stimulation. Results show that these indicators are influenced by the surface and position of the RE. The use of a RE model corresponding to the implanted device rather than the usually simplified model leads to an increase of the system impedance (+48%) and a reduction of the area of activated tissue (-15%).
Resumo:
The main goal of this paper is to propose a convergent finite volume method for a reactionâeuro"diffusion system with cross-diffusion. First, we sketch an existence proof for a class of cross-diffusion systems. Then the standard two-point finite volume fluxes are used in combination with a nonlinear positivity-preserving approximation of the cross-diffusion coefficients. Existence and uniqueness of the approximate solution are addressed, and it is also shown that the scheme converges to the corresponding weak solution for the studied model. Furthermore, we provide a stability analysis to study pattern-formation phenomena, and we perform two-dimensional numerical examples which exhibit formation of nonuniform spatial patterns. From the simulations it is also found that experimental rates of convergence are slightly below second order. The convergence proof uses two ingredients of interest for various applications, namely the discrete Sobolev embedding inequalities with general boundary conditions and a space-time $L^1$ compactness argument that mimics the compactness lemma due to Kruzhkov. The proofs of these results are given in the Appendix.
Resumo:
Dissolved organic matter (DOM) is a complex mixture of organic compounds, ubiquitous in marine and freshwater systems. Fluorescence spectroscopy, by means of Excitation-Emission Matrices (EEM), has become an indispensable tool to study DOM sources, transport and fate in aquatic ecosystems. However the statistical treatment of large and heterogeneous EEM data sets still represents an important challenge for biogeochemists. Recently, Self-Organising Maps (SOM) has been proposed as a tool to explore patterns in large EEM data sets. SOM is a pattern recognition method which clusterizes and reduces the dimensionality of input EEMs without relying on any assumption about the data structure. In this paper, we show how SOM, coupled with a correlation analysis of the component planes, can be used both to explore patterns among samples, as well as to identify individual fluorescence components. We analysed a large and heterogeneous EEM data set, including samples from a river catchment collected under a range of hydrological conditions, along a 60-km downstream gradient, and under the influence of different degrees of anthropogenic impact. According to our results, chemical industry effluents appeared to have unique and distinctive spectral characteristics. On the other hand, river samples collected under flash flood conditions showed homogeneous EEM shapes. The correlation analysis of the component planes suggested the presence of four fluorescence components, consistent with DOM components previously described in the literature. A remarkable strength of this methodology was that outlier samples appeared naturally integrated in the analysis. We conclude that SOM coupled with a correlation analysis procedure is a promising tool for studying large and heterogeneous EEM data sets.
Resumo:
Depuis le séminaire H. Cartan de 1954-55, il est bien connu que l'on peut trouver des éléments de torsion arbitrairement grande dans l'homologie entière des espaces d'Eilenberg-MacLane K(G,n) où G est un groupe abélien non trivial et n>1. L'objectif majeur de ce travail est d'étendre ce résultat à des H-espaces possédant plus d'un groupe d'homotopie non trivial. Dans le but de contrôler précisément le résultat de H. Cartan, on commence par étudier la dualité entre l'homologie et la cohomologie des espaces d'Eilenberg-MacLane 2-locaux de type fini. On parvient ainsi à raffiner quelques résultats qui découlent des calculs de H. Cartan. Le résultat principal de ce travail peut être formulé comme suit. Soit X un H-espace ne possédant que deux groupes d'homotopie non triviaux, tous deux finis et de 2-torsion. Alors X n'admet pas d'exposant pour son groupe gradué d'homologie entière réduite. On construit une large classe d'espaces pour laquelle ce résultat n'est qu'une conséquence d'une caractéristique topologique, à savoir l'existence d'un rétract faible X K(G,n) pour un certain groupe abélien G et n>1. On généralise également notre résultat principal à des espaces plus compliqués en utilisant la suite spectrale d'Eilenberg-Moore ainsi que des méthodes analytiques faisant apparaître les nombres de Betti et leur comportement asymptotique. Finalement, on conjecture que les espaces qui ne possédent qu'un nombre fini de groupes d'homotopie non triviaux n'admettent pas d'exposant homologique. Ce travail contient par ailleurs la présentation de la « machine d'Eilenberg-MacLane », un programme C++ conçu pour calculer explicitement les groupes d'homologie entière des espaces d'Eilenberg-MacLane. <br/><br/>By the work of H. Cartan, it is well known that one can find elements of arbitrarilly high torsion in the integral (co)homology groups of an Eilenberg-MacLane space K(G,n), where G is a non-trivial abelian group and n>1. The main goal of this work is to extend this result to H-spaces having more than one non-trivial homotopy groups. In order to have an accurate hold on H. Cartan's result, we start by studying the duality between homology and cohomology of 2-local Eilenberg-MacLane spaces of finite type. This leads us to some improvements of H. Cartan's methods in this particular case. Our main result can be stated as follows. Let X be an H-space with two non-vanishing finite 2-torsion homotopy groups. Then X does not admit any exponent for its reduced integral graded (co)homology group. We construct a wide class of examples for which this result is a simple consequence of a topological feature, namely the existence of a weak retract X K(G,n) for some abelian group G and n>1. We also generalize our main result to more complicated stable two stage Postnikov systems, using the Eilenberg-Moore spectral sequence and analytic methods involving Betti numbers and their asymptotic behaviour. Finally, we investigate some guesses on the non-existence of homology exponents for finite Postnikov towers. We conjecture that Postnikov pieces do not admit any (co)homology exponent. This work also includes the presentation of the "Eilenberg-MacLane machine", a C++ program designed to compute explicitely all integral homology groups of Eilenberg-MacLane spaces. <br/><br/>Il est toujours difficile pour un mathématicien de parler de son travail. La difficulté réside dans le fait que les objets qu'il étudie sont abstraits. On rencontre assez rarement un espace vectoriel, une catégorie abélienne ou une transformée de Laplace au coin de la rue ! Cependant, même si les objets mathématiques sont difficiles à cerner pour un non-mathématicien, les méthodes pour les étudier sont essentiellement les mêmes que celles utilisées dans les autres disciplines scientifiques. On décortique les objets complexes en composantes plus simples à étudier. On dresse la liste des propriétés des objets mathématiques, puis on les classe en formant des familles d'objets partageant un caractère commun. On cherche des façons différentes, mais équivalentes, de formuler un problème. Etc. Mon travail concerne le domaine mathématique de la topologie algébrique. Le but ultime de cette discipline est de parvenir à classifier tous les espaces topologiques en faisant usage de l'algèbre. Cette activité est comparable à celle d'un ornithologue (topologue) qui étudierait les oiseaux (les espaces topologiques) par exemple à l'aide de jumelles (l'algèbre). S'il voit un oiseau de petite taille, arboricole, chanteur et bâtisseur de nids, pourvu de pattes à quatre doigts, dont trois en avant et un, muni d'une forte griffe, en arrière, alors il en déduira à coup sûr que c'est un passereau. Il lui restera encore à déterminer si c'est un moineau, un merle ou un rossignol. Considérons ci-dessous quelques exemples d'espaces topologiques: a) un cube creux, b) une sphère et c) un tore creux (c.-à-d. une chambre à air). a) b) c) Si toute personne normalement constituée perçoit ici trois figures différentes, le topologue, lui, n'en voit que deux ! De son point de vue, le cube et la sphère ne sont pas différents puisque ils sont homéomorphes: on peut transformer l'un en l'autre de façon continue (il suffirait de souffler dans le cube pour obtenir la sphère). Par contre, la sphère et le tore ne sont pas homéomorphes: triturez la sphère de toutes les façons (sans la déchirer), jamais vous n'obtiendrez le tore. Il existe un infinité d'espaces topologiques et, contrairement à ce que l'on serait naïvement tenté de croire, déterminer si deux d'entre eux sont homéomorphes est très difficile en général. Pour essayer de résoudre ce problème, les topologues ont eu l'idée de faire intervenir l'algèbre dans leurs raisonnements. Ce fut la naissance de la théorie de l'homotopie. Il s'agit, suivant une recette bien particulière, d'associer à tout espace topologique une infinité de ce que les algébristes appellent des groupes. Les groupes ainsi obtenus sont appelés groupes d'homotopie de l'espace topologique. Les mathématiciens ont commencé par montrer que deux espaces topologiques qui sont homéomorphes (par exemple le cube et la sphère) ont les même groupes d'homotopie. On parle alors d'invariants (les groupes d'homotopie sont bien invariants relativement à des espaces topologiques qui sont homéomorphes). Par conséquent, deux espaces topologiques qui n'ont pas les mêmes groupes d'homotopie ne peuvent en aucun cas être homéomorphes. C'est là un excellent moyen de classer les espaces topologiques (pensez à l'ornithologue qui observe les pattes des oiseaux pour déterminer s'il a affaire à un passereau ou non). Mon travail porte sur les espaces topologiques qui n'ont qu'un nombre fini de groupes d'homotopie non nuls. De tels espaces sont appelés des tours de Postnikov finies. On y étudie leurs groupes de cohomologie entière, une autre famille d'invariants, à l'instar des groupes d'homotopie. On mesure d'une certaine manière la taille d'un groupe de cohomologie à l'aide de la notion d'exposant; ainsi, un groupe de cohomologie possédant un exposant est relativement petit. L'un des résultats principaux de ce travail porte sur une étude de la taille des groupes de cohomologie des tours de Postnikov finies. Il s'agit du théorème suivant: un H-espace topologique 1-connexe 2-local et de type fini qui ne possède qu'un ou deux groupes d'homotopie non nuls n'a pas d'exposant pour son groupe gradué de cohomologie entière réduite. S'il fallait interpréter qualitativement ce résultat, on pourrait dire que plus un espace est petit du point de vue de la cohomologie (c.-à-d. s'il possède un exposant cohomologique), plus il est intéressant du point de vue de l'homotopie (c.-à-d. il aura plus de deux groupes d'homotopie non nuls). Il ressort de mon travail que de tels espaces sont très intéressants dans le sens où ils peuvent avoir une infinité de groupes d'homotopie non nuls. Jean-Pierre Serre, médaillé Fields en 1954, a montré que toutes les sphères de dimension >1 ont une infinité de groupes d'homotopie non nuls. Des espaces avec un exposant cohomologique aux sphères, il n'y a qu'un pas à franchir...
Resumo:
Adaptació de l'algorisme de Kumar per resoldre sistemes d'equacions amb matrius de Toeplitz sobre els reals a cossos finits en un temps 0 (n log n).
Resumo:
La hiérarchie de Wagner constitue à ce jour la plus fine classification des langages ω-réguliers. Par ailleurs, l'approche algébrique de la théorie de langages formels montre que ces ensembles ω-réguliers correspondent précisément aux langages reconnaissables par des ω-semigroupes finis pointés. Ce travail s'inscrit dans ce contexte en fournissant une description complète de la contrepartie algébrique de la hiérarchie de Wagner, et ce par le biais de la théorie descriptive des jeux de Wadge. Plus précisément, nous montrons d'abord que le degré de Wagner d'un langage ω-régulier est effectivement un invariant syntaxique. Nous définissons ensuite une relation de réduction entre ω-semigroupes pointés par le biais d'un jeu infini de type Wadge. La collection de ces structures algébriques ordonnée par cette relation apparaît alors comme étant isomorphe à la hiérarchie de Wagner, soit un quasi bon ordre décidable de largeur 2 et de hauteur ω. Nous exposons par la suite une procédure de décidabilité de cette hiérarchie algébrique : on décrit une représentation graphique des ω-semigroupes finis pointés, puis un algorithme sur ces structures graphiques qui calcule le degré de Wagner de n'importe quel élément. Ainsi le degré de Wagner de tout langage ω-régulier peut être calculé de manière effective directement sur son image syntaxique. Nous montrons ensuite comment construire directement et inductivement une structure de n''importe quel degré. Nous terminons par une description détaillée des invariants algébriques qui caractérisent tous les degrés de cette hiérarchie. Abstract The Wagner hierarchy is known so far to be the most refined topological classification of ω-rational languages. Also, the algebraic study of formal languages shows that these ω-rational sets correspond precisely to the languages recognizable by finite pointed ω-semigroups. Within this framework, we provide a construction of the algebraic counterpart of the Wagner hierarchy. We adopt a hierarchical game approach, by translating the Wadge theory from the ω-rational language to the ω-semigroup context. More precisely, we first show that the Wagner degree is indeed a syntactic invariant. We then define a reduction relation on finite pointed ω-semigroups by means of a Wadge-like infinite two-player game. The collection of these algebraic structures ordered by this reduction is then proven to be isomorphic to the Wagner hierarchy, namely a well-founded and decidable partial ordering of width 2 and height $\omega^\omega$. We also describe a decidability procedure of this hierarchy: we introduce a graph representation of finite pointed ω-semigroups allowing to compute their precise Wagner degrees. The Wagner degree of every ω-rational language can therefore be computed directly on its syntactic image. We then show how to build a finite pointed ω-semigroup of any given Wagner degree. We finally describe the algebraic invariants characterizing every Wagner degree of this hierarchy.
Resumo:
The solid-rotor induction motor provides a mechanically and thermally reliable solution for demanding environments where other rotor solutions are prohibited or questionable. Solid rotors, which are manufactured of single pieces of ferromagnetic material, are commonly used in motors in which the rotationspeeds exceed substantially the conventional speeds of laminated rotors with squirrel-cage. During the operation of a solid-rotor electrical machine, the rotor core forms a conductor for both the magnetic flux and the electrical current. This causes an increase in the rotor resistance and rotor leakage inductance, which essentially decreases the power factor and the efficiency of the machine. The electromagnetic problems related to the solid-rotor induction motor are mostly associated with the low performance of the rotor. Therefore, the main emphasis in this thesis is put on the solid steel rotor designs. The rotor designs studied in thisthesis are based on the fact that the rotor construction should be extremely robust and reliable to withstand the high mechanical stresses caused by the rotational velocity of the rotor. In addition, the demanding operation environment sets requirements for the applied materials because of the high temperatures and oxidizing acids, which may be present in the cooling fluid. Therefore, the solid rotors analyzed in this thesis are made of a single piece of ferromagnetic material without any additional parts, such as copper end-rings or a squirrel-cage. A pure solid rotor construction is rigid and able to keep its balance over a large speed range. It also may tolerate other environmental stresses such as corroding substances or abrasive particles. In this thesis, the main target is to improve the performance of an induction motor equipped with a solid steel rotor by traditional methods: by axial slitting of the rotor, by selecting a proper rotor core material and by coating the rotor with a high-resistive stainless ferromagnetic material. In the solid steel rotor calculation, the rotor end-effects have a significant effect on the rotor characteristics. Thus, the emphasis is also put on the comparison of different rotor endfactors. In addition, a corrective slip-dependent end-factor is proposed. The rotor designs covered in this thesis are the smooth solid rotor, the axially slitted solid rotor and the slitted rotor having a uniform ferromagnetic coating cylinder. The thesis aims at design rules for multi-megawatt machines. Typically, mega-watt-size solidrotor machines find their applications mainly in the field of electric-motor-gas-compression systems, in steam-turbine applications, and in various types of largepower pump applications, where high operational speeds are required. In this thesis, a 120 kW, 10 000 rpm solid-rotor induction motor is usedas a small-scale model for such megawatt-range solid-rotor machines. The performance of the 120 kW solid-rotor induction motors is determined by experimental measurements and finite element calculations.
A priori parameterisation of the CERES soil-crop models and tests against several European data sets
Resumo:
Mechanistic soil-crop models have become indispensable tools to investigate the effect of management practices on the productivity or environmental impacts of arable crops. Ideally these models may claim to be universally applicable because they simulate the major processes governing the fate of inputs such as fertiliser nitrogen or pesticides. However, because they deal with complex systems and uncertain phenomena, site-specific calibration is usually a prerequisite to ensure their predictions are realistic. This statement implies that some experimental knowledge on the system to be simulated should be available prior to any modelling attempt, and raises a tremendous limitation to practical applications of models. Because the demand for more general simulation results is high, modellers have nevertheless taken the bold step of extrapolating a model tested within a limited sample of real conditions to a much larger domain. While methodological questions are often disregarded in this extrapolation process, they are specifically addressed in this paper, and in particular the issue of models a priori parameterisation. We thus implemented and tested a standard procedure to parameterize the soil components of a modified version of the CERES models. The procedure converts routinely-available soil properties into functional characteristics by means of pedo-transfer functions. The resulting predictions of soil water and nitrogen dynamics, as well as crop biomass, nitrogen content and leaf area index were compared to observations from trials conducted in five locations across Europe (southern Italy, northern Spain, northern France and northern Germany). In three cases, the model’s performance was judged acceptable when compared to experimental errors on the measurements, based on a test of the model’s root mean squared error (RMSE). Significant deviations between observations and model outputs were however noted in all sites, and could be ascribed to various model routines. In decreasing importance, these were: water balance, the turnover of soil organic matter, and crop N uptake. A better match to field observations could therefore be achieved by visually adjusting related parameters, such as field-capacity water content or the size of soil microbial biomass. As a result, model predictions fell within the measurement errors in all sites for most variables, and the model’s RMSE was within the range of published values for similar tests. We conclude that the proposed a priori method yields acceptable simulations with only a 50% probability, a figure which may be greatly increased through a posteriori calibration. Modellers should thus exercise caution when extrapolating their models to a large sample of pedo-climatic conditions for which they have only limited information.
Resumo:
This paper is devoted to the study of the volcanoes of l-isogenies of elliptic curves over a finite field, focusing on their height as well as on the location of curves across its different levels. The core of the paper lies on the relationship between the l-Sylow subgroup of an elliptic curve and the level of the volcano where it is placed. The particular case l = 3 is studied in detail, giving an algorithm to determine the volcano of 3-isogenies of a given elliptic curve. Experimental results are also provided.
Resumo:
The analysis of the shape of excitation-emission matrices (EEMs) is a relevant tool for exploring the origin, transport and fate of dissolved organic matter (DOM) in aquatic ecosystems. Within this context, the decomposition of EEMs is acquiring a notable relevance. A simple mathematical algorithm that automatically deconvolves individual EEMs is described, creating new possibilities for the comparison of DOM fluorescence properties and EEMs that are very different from each other. A mixture model approach is adopted to decompose complex surfaces into sub-peaks. The laplacian operator and the Nelder-Mead optimisation algorithm are implemented to individuate and automatically locate potential peaks in the EEM landscape. The EEMs of a simple artificial mixture of fluorophores and DOM samples collected in a Mediterranean river are used to describe the model application and to illustrate a strategy that optimises the search for the optimal output.
Resumo:
Dissolved organic matter (DOM) is a complex mixture of organic compounds, ubiquitous in marine and freshwater systems. Fluorescence spectroscopy, by means of Excitation-Emission Matrices (EEM), has become an indispensable tool to study DOM sources, transport and fate in aquatic ecosystems. However the statistical treatment of large and heterogeneous EEM data sets still represents an important challenge for biogeochemists. Recently, Self-Organising Maps (SOM) has been proposed as a tool to explore patterns in large EEM data sets. SOM is a pattern recognition method which clusterizes and reduces the dimensionality of input EEMs without relying on any assumption about the data structure. In this paper, we show how SOM, coupled with a correlation analysis of the component planes, can be used both to explore patterns among samples, as well as to identify individual fluorescence components. We analysed a large and heterogeneous EEM data set, including samples from a river catchment collected under a range of hydrological conditions, along a 60-km downstream gradient, and under the influence of different degrees of anthropogenic impact. According to our results, chemical industry effluents appeared to have unique and distinctive spectral characteristics. On the other hand, river samples collected under flash flood conditions showed homogeneous EEM shapes. The correlation analysis of the component planes suggested the presence of four fluorescence components, consistent with DOM components previously described in the literature. A remarkable strength of this methodology was that outlier samples appeared naturally integrated in the analysis. We conclude that SOM coupled with a correlation analysis procedure is a promising tool for studying large and heterogeneous EEM data sets.
Resumo:
RESUMEN: El objetivo de este trabajo es calcular el importe de la prima pura periódica que debe cobrar el reasegurador a la cedente en un reaseguro finite risk en ambiente financiero estocástico. El problema de la convolución de las diferentes variables aleatorias que intervienen en el cálculo de la prima lo hemos solucionado simulando, por Monte-Carlo, trayectorias de siniestralidad para el reasegurador aplicando posteriormente, en cada trayectoria simulada, los criterios de decisión financieros, esperanza, varianza y desviación. En los criterios de la varianza y de la desviación proponemos utilizar una ecuación de recurrencia estocástica para evitar el problema de la dependencia que existe entre los factores de capitalización estocásticos, obteniendo la prima de reaseguro en función del nivel de aversión al riesgo del reasegurador y de la volatilidad del tipo de interés. Palabras clave: Finite risk, ambiente estocástico, ecuación de recurrencia, simulación de Monte-Carlo, prima pura periódica.