935 resultados para Energy Density


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Systematic low-temperature measurements of the thermal conductivity, specific heat, dielectric constant, and temperature-dependent ultrasound velocity have been made on a single piece of vitreous silica. These measurements were repeated after fast neutron irradiation of the material. It was found that the irradiation produced changes of the same relative magnitude in the low-temperature excess specific heat C , the thermal conductivity K, ex and the anomalous temperature dependence of the ultrasound velocity Deltav/v. A corresponding change in the temperature dependent dielectric constant was not observed. It is therefore likely that K and Deltav/v are determined by the same localized excitations responsible for C , but the temperature dependence of the dielectric constant may have a different, though possibly related, origin. Furthermore, a consistent account for the measured C , K, ex and Deltav/v of unirradiated silica is given by the tunneling-state model with a single, energy-dependent density of states. Changes in these three properties due to irradiation can be explained by altering only the density of tunneling states incorporated in the model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It was evaluated the effects of metabolizable energy (ME) and digestible lysine (dLYS) densities on performance and body composition of weaned piglets. The study used 114 piglets weaned at 7.4 ± 0.80 kg, out of which 108 were allotted in the nursery and 6 were slaughtered on the weaning day to determine comparative data of body chemical composition. Six nutrients densities were stipulated from a previous study based on the highest nitrogen retention, maintaining the following ME:LYS relationship in the experimental diets: 3,390:1.291; 3,450:1.409; 3,650:1.411; 3,780:1.461; 3,940:1.507; and 4,109 kcal/kg ME:1.564% dLYS. The experimental diets were offered for 13 days when the piglets reached 12.986 ± 1.449 kg of body weight. The probable residual effects of nutritional density on the subsequent performance of the piglets were evaluated. At the end of initial phase 1, six piglets from each density were slaughtered to determine their chemical composition in body fractions and empty body. There was no significant influence of nutritional levels on the performance of the piglets at the end of the evaluation. The results of food conversion and body composition confirm the level indicated in the previous study, 4 g dLYS/Mcal of ME. The increase of energy and lysine densities confirms the need for a correct relationship among both of them to assure better performance of the piglets at the beginning of the growing phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

First-principles scalar relativistic calculations in supercells of 16 atoms are used to represent disordered B2 ordering of Fe(3)Ga in order to observe the effect of Ga-Ga pairs on the electronic structure of this alloy. From a comparison with pure bcc Fe it is observed that the energy position and occupation of e(g) and t(2g) states are largely affected by the Ga-Ga pairs and strengthened intraplane interactions takes place. The results show that a larger hybridization of the conduction band is in the source of the magnetostriction enhancement experimentally observed in Galfenol. (C) 2011 American Institute of Physics. [doi:10.1063/1.3525609]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The abundance and distribution of collapsed objects such as galaxy clusters will become an important tool to investigate the nature of dark energy and dark matter. Number counts of very massive objects are sensitive not only to the equation of state of dark energy, which parametrizes the smooth component of its pressure, but also to the sound speed of dark energy, which determines the amount of pressure in inhomogeneous and collapsed structures. Since the evolution of these structures must be followed well into the nonlinear regime, and a fully relativistic framework for this regime does not exist yet, we compare two approximate schemes: the widely used spherical collapse model and the pseudo-Newtonian approach. We show that both approximation schemes convey identical equations for the density contrast, when the pressure perturbation of dark energy is parametrized in terms of an effective sound speed. We also make a comparison of these approximate approaches to general relativity in the linearized regime, which lends some support to the approximations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the electronic properties of Mn(B) substitutional doping in cubic boron nitride (BN), for different charge states, using density functional theory (DFT) calculations. We show that the neutral Mn has a nonmagnetic ground state (S=0). Upon charge injection, it is unambiguously shown that the Mn(B)(-) has a high-spin configuration with a strong, localized magnetic moment of 5 mu(Bohr). We developed a simple model, parameterized by the DFT results, that allows us to interpret the rules played by the crystal-field and exchange-correlation splitting in the magnetization process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bilayer graphene nanoribbons with zigzag termination are studied within the tight-binding model. We also include single-site electron-electron interactions via the Hubbard model within the unrestricted Hartree-Fock approach. We show that either the interactions between the outermost edge atoms or the presence of a magnetic order can cause a splitting of the zero-energy edge states. Two kinds of edge alignments are considered. For one kind of edge alignment (?) the system is nonmagnetic unless the Hubbard parameter U becomes greater than a critical value Uc. For the other kind of edge alignment (?) the system is magnetic for any U>0. Our results agree very well with ab initio density functional theory calculations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The local-density approximation (LDA) together with the half occupation (transitionstate) is notoriously successful in the calculation of atomic ionization potentials. When it comes to extended systems, such as a semiconductor infinite system, it has been very difficult to find a way to half ionize because the hole tends to be infinitely extended (a Bloch wave). The answer to this problem lies in the LDA formalism itself. One proves that the half occupation is equivalent to introducing the hole self-energy (electrostatic and exchange correlation) into the Schrodinger equation. The argument then becomes simple: The eigenvalue minus the self-energy has to be minimized because the atom has a minimal energy. Then one simply proves that the hole is localized, not infinitely extended, because it must have maximal self-energy. Then one also arrives at an equation similar to the self- interaction correction equation, but corrected for the removal of just 1/2 electron. Applied to the calculation of band gaps and effective masses, we use the self- energy calculated in atoms and attain a precision similar to that of GW, but with the great advantage that it requires no more computational effort than standard LDA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy gaps are crucial aspects of the electronic structure of finite and extended systems. Whereas much is known about how to define and calculate charge gaps in density-functional theory (DFT), and about the relation between these gaps and derivative discontinuities of the exchange-correlation functional, much less is known about spin gaps. In this paper we give density-functional definitions of spin-conserving gaps, spin-flip gaps and the spin stiffness in terms of many-body energies and in terms of single-particle (Kohn-Sham) energies. Our definitions are as analogous as possible to those commonly made in the charge case, but important differences between spin and charge gaps emerge already on the single-particle level because unlike the fundamental charge gap spin gaps involve excited-state energies. Kohn-Sham and many-body spin gaps are predicted to differ, and the difference is related to derivative discontinuities that are similar to, but distinct from, those usually considered in the case of charge gaps. Both ensemble DFT and time-dependent DFT (TDDFT) can be used to calculate these spin discontinuities from a suitable functional. We illustrate our findings by evaluating our definitions for the Lithium atom, for which we calculate spin gaps and spin discontinuities by making use of near-exact Kohn-Sham eigenvalues and, independently, from the single-pole approximation to TDDFT. The many-body corrections to the Kohn-Sham spin gaps are found to be negative, i.e., single-particle calculations tend to overestimate spin gaps while they underestimate charge gaps.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bounds on the exchange-correlation energy of many-electron systems are derived and tested. By using universal scaling properties of the electron-electron interaction, we obtain the exponent of the bounds in three, two, one, and quasione dimensions. From the properties of the electron gas in the dilute regime, the tightest estimate to date is given for the numerical prefactor of the bound, which is crucial in practical applications. Numerical tests on various low-dimensional systems are in line with the bounds obtained and give evidence of an interesting dimensional crossover between two and one dimensions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We derive a closed analytical expression for the exchange energy of the three-dimensional interacting electron gas in strong magnetic fields, which goes beyond the quantum limit (L=0) by explicitly including the effect of the second, L=1, Landau level and arbitrary spin polarization. The inclusion of the L=1 level brings the fields to which the formula applies closer to the laboratory range, as compared to previous expressions, valid only for L=0 and complete spin polarization. We identify and explain two distinct regimes separated by a critical density n(c). Below n(c), the per particle exchange energy is lowered by the contribution of L=1, whereas above n(c) it is increased. As special cases of our general equation we recover various known more limited results for higher fields, and we identify and correct a few inconsistencies in some of these earlier expressions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The knowledge of the atomic structure of clusters composed by few atoms is a basic prerequisite to obtain insights into the mechanisms that determine their chemical and physical properties as a function of diameter, shape, surface termination, as well as to understand the mechanism of bulk formation. Due to the wide use of metal systems in our modern life, the accurate determination of the properties of 3d, 4d, and 5d metal clusters poses a huge problem for nanoscience. In this work, we report a density functional theory study of the atomic structure, binding energies, effective coordination numbers, average bond lengths, and magnetic properties of the 3d, 4d, and 5d metal (30 elements) clusters containing 13 atoms, M(13). First, a set of lowest-energy local minimum structures (as supported by vibrational analysis) were obtained by combining high-temperature first- principles molecular-dynamics simulation, structure crossover, and the selection of five well-known M(13) structures. Several new lower energy configurations were identified, e. g., Pd(13), W(13), Pt(13), etc., and previous known structures were confirmed by our calculations. Furthermore, the following trends were identified: (i) compact icosahedral-like forms at the beginning of each metal series, more opened structures such as hexagonal bilayerlike and double simple-cubic layers at the middle of each metal series, and structures with an increasing effective coordination number occur for large d states occupation. (ii) For Au(13), we found that spin-orbit coupling favors the three-dimensional (3D) structures, i.e., a 3D structure is about 0.10 eV lower in energy than the lowest energy known two-dimensional configuration. (iii) The magnetic exchange interactions play an important role for particular systems such as Fe, Cr, and Mn. (iv) The analysis of the binding energy and average bond lengths show a paraboliclike shape as a function of the occupation of the d states and hence, most of the properties can be explained by the chemistry picture of occupation of the bonding and antibonding states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The origin of the unique geometry for nitric oxide (NO) adsorption on Pd(111) and Pt(111) surfaces as well as the effect of temperature were studied by density functional theory calculations and ab initio molecular dynamics at finite temperature. We found that at low coverage, the adsorption geometry is determined by electronic interactions, depending sensitively on the adsorption sites and coverages, and the effect of temperature on geometries is significant. At coverage of 0.25 monolayer (ML), adsorbed NO at hollow sites prefer an upright configuration, while NO adsorbed at top sites prefer a tilting configuration. With increase in the coverage up to 0.50 ML, the enhanced steric repulsion lead to the tilting of hollow NO. We found that the tilting was enhanced by the thermal effects. At coverage of 0.75 ML with p(2 x 2)-3NO(fcc+hcp+top) structure, we found that there was no preferential orientation for tilted top NO. The interplay of the orbital hybridization, thermal effects, steric repulsion, and their effects on the adsorption geometries were highlighted at the end.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Platinum plays an important role in catalysis and electrochemistry, and it is known that the direct interaction of oxygen with Pt surfaces can lead to the formation of platinum oxides (PtO(x)), which can affect the reactivity. To contribute to the atomistic understanding of the atomic structure of PtO(x), we report a density functional theory study of the atomic structure of bulk PtO(x) (1 <= x <= 2). From our calculations, we identified a lowest-energy structure (GeS type, space group Pnma) for PtO, which is 0.181 eV lower in energy than the structure suggested by W. J. Moore and L. Pauling [J. Am. Chem. Soc. 63, 1392 (1941)] (PtS type). Furthermore, two atomic structures were identified for PtO(2), which are almost degenerate in energy with the lowest-energy structure reported so far for PtO(2) (CaCl(2) type). Based on our results and analysis, we suggest that Pt and O atoms tend to form octahedron motifs in PtO(x) even at lower O composition by the formation of Pt-Pt bonds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A reduction in LDL cholesterol and an increase in HDL cholesterol levels are clinically relevant parameters for the treatment of dyslipidaemia, and exercise is often recommended as an intervention. This study aimed to examine the effects of acute, high-intensity exercise (similar to 90% VO(2max)) and varying carbohydrate levels (control, low and high) on the blood lipid profile. Six male subjects were distributed randomly into exercise groups, based on the carbohydrate diets (control, low and high) to which the subjects were restricted before each exercise session. The lipid profile (triglycerides, VLDL, HDL cholesterol, LDL cholesterol and total cholesterol) was determined at rest, and immediately and 1 h after exercise bouts. There were no changes in the time exhaustion (8.00 +/- A 1.83; 7.82 +/- A 2.66; and 9.09 +/- A 3.51 min) and energy expenditure (496.0 +/- A 224.8; 411.5 +/- A 223.1; and 592.1 +/- A 369.9 kJ) parameters with the three varying carbohydrate intake (control, low and high). Glucose and insulin levels did not show time-dependent changes under the different conditions (P > 0.05). Total cholesterol and LDL cholesterol were reduced after the exhaustion and 1 h recovery periods when compared with rest periods only in the control carbohydrate intake group (P < 0.05), although this relation failed when the diet was manipulated. These results indicate that acute, high-intensity exercise with low energy expenditure induces changes in the cholesterol profile, and that influences of carbohydrate level corresponding to these modifications fail when carbohydrate (low and high) intake is manipulated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper discusses the availability of biomass in Brazil to supply charcoal to the steel industry on the bases of an initial global assessment of land potentially available for plantations and of Brazilian data that allows refining the assessment and specifying the issue of practical availability. Technical potentials are first assessed through a series of simple rules against direct competition with agriculture, forests and protected areas, and of quantitative criteria, whether geo-climatic (rainfall), demographic (population density) or legal (reserves). Institutional, social and economic factors are then identified and discussed so as to account for the practical availability of Brazilian biomass through six criteria. The ranking of nine Brazilian States according to these criteria brings out the necessary trade-offs in the selection of land for plantations that would efficiently supply charcoal to the steel industry. (C) 2008 Elsevier Ltd. All rights reserved.