Splitting of the zero-energy edge states in bilayer graphene
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
18/04/2012
18/04/2012
2010
|
Resumo |
Bilayer graphene nanoribbons with zigzag termination are studied within the tight-binding model. We also include single-site electron-electron interactions via the Hubbard model within the unrestricted Hartree-Fock approach. We show that either the interactions between the outermost edge atoms or the presence of a magnetic order can cause a splitting of the zero-energy edge states. Two kinds of edge alignments are considered. For one kind of edge alignment (?) the system is nonmagnetic unless the Hubbard parameter U becomes greater than a critical value Uc. For the other kind of edge alignment (?) the system is magnetic for any U>0. Our results agree very well with ab initio density functional theory calculations. |
Identificador |
PHYSICAL REVIEW B, v.81, n.4, 2010 1098-0121 http://producao.usp.br/handle/BDPI/16224 10.1103/PhysRevB.81.045430 |
Idioma(s) |
eng |
Publicador |
AMER PHYSICAL SOC |
Relação |
Physical Review B |
Direitos |
restrictedAccess Copyright AMER PHYSICAL SOC |
Palavras-Chave | #DEVICES #Physics, Condensed Matter |
Tipo |
article original article publishedVersion |