887 resultados para Electrical and Computer Engineering
Resumo:
Polymeric insulation is an increasing tendency in projects and maintenance of electrical networks for power distribution and transmission. Electrical power devices (e. g., insulators and surge arresters) developed by using polymeric insulation presents many advantages compared to the prior power components using ceramic insulation, such as: a better performance under high pollution environment; high hydrophobicity; high resistance to mechanical, electrical and chemical stresses. The practice with silicone insulators in polluted environments has shown that the ideal performance is directly related to insulator design and polymer formulation. One of the most common misunderstandings in the design of silicone compounds for insulators is the amount of inorganic load used in their formulation. This paper attempts to clarify how the variation of the inorganic load amount affects physicochemical characteristics of different silicone compounds. The physicochemical evaluation is performed from several measurements, such as: density, hardness, elongation, tensile strength. In addition, the evaluation of the physicochemical structure is carried out using infrared test and scanning electronic microscopy (SEM). The electrical analysis is performed from the electric tracking wheel and erosion test, in agreement with the recommendation of the International Electrotechnical Commission (IEC). (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Amorphous SiC(x)N(y) films have been deposited on (100) Si substrates by RF magnetron sputtering of a SiC target in a variable nitrogen-argon atmosphere. The as-deposited films were submitted to thermal anneling in a furnace under argon atmosphere at 1000 degrees C for 1 hour. Composition and structure of unannealed and annealed samples were investigated by RBS and FTIR. To study the electrical characteristics of SiC(x)N(y) films, Metal-insulator-semiconductor (MIS) structures were fabricated. Elastic modulus and hardness of the films were determined by nanoindentation. The results of these studies showed that nitrogen content and thermal annealing affect the electrical, mechanical and structural properties of SiC(x)N(y) films.
Resumo:
To validate a model for investigating the effects of analgesic drugs on mechanical, thermal and electrical stimulation testing. To investigate repeatability, sensitivity and specificity of nociceptive tests. Randomised experiment with 2 observers in 2 phases. Mechanical (M), thermal (TL) and electrical (E) stimuli were applied to the dorsal metacarpus (M-left and TL-right) and coronary band of the left thoracic limb (E) and a thoracic thermal stimulus (TT) was applied caudal to the withers in 8 horses (405 ± 43 kg). Stimuli intensities were increased until a clear avoidance response was detected without exceeding 20 N (M), 60°C (TL and TT) and 15 V (E). For each set of tests, 3 real stimuli and one sham stimulus were applied (32 per animal) using a blinded, randomised, crossover design repeated after 6 months. A distribution frequency and, for each stimulus, Chi-square and McNemar tests compared both the proportion of positive responses detected by 2 observers and the 2 study phases. The κ coefficients estimated interobserver agreement in determining endpoints. Sensitivity (384 tests) and specificity (128 tests) were evaluated for each nociceptive stimulus to assess the evaluators' accuracy in detecting real and sham stimuli. Nociceptive thresholds were 3.1 ± 2 N (M), 8.1 ± 3.8 V (E), 51.4 ± 5.5°C (TL) and 55.2 ± 5.3°C (TT). The level of agreement after all tests, M, E, TL and TT, was 90, 100, 84, 98 and 75%, respectively. Sensitivity was 89, 100, 89, 98 and 70% and specificity 92, 97, 88, 91 and 94%, respectively. The high interobserver agreement, sensitivity and specificity suggest that M, E and TL tests are valid for pain studies in horses and are suitable tools for investigating antinociceptive effects of analgesics in horses.
Resumo:
This study investigated the influence of top-down and bottom-up information on speech perception in complex listening environments. Specifically, the effects of listening to different types of processed speech were examined on intelligibility and on simultaneous visual-motor performance. The goal was to extend the generalizability of results in speech perception to environments outside of the laboratory. The effect of bottom-up information was evaluated with natural, cell phone and synthetic speech. The effect of simultaneous tasks was evaluated with concurrent visual-motor and memory tasks. Earlier works on the perception of speech during simultaneous visual-motor tasks have shown inconsistent results (Choi, 2004; Strayer & Johnston, 2001). In the present experiments, two dual-task paradigms were constructed in order to mimic non-laboratory listening environments. In the first two experiments, an auditory word repetition task was the primary task and a visual-motor task was the secondary task. Participants were presented with different kinds of speech in a background of multi-speaker babble and were asked to repeat the last word of every sentence while doing the simultaneous tracking task. Word accuracy and visual-motor task performance were measured. Taken together, the results of Experiments 1 and 2 showed that the intelligibility of natural speech was better than synthetic speech and that synthetic speech was better perceived than cell phone speech. The visual-motor methodology was found to demonstrate independent and supplemental information and provided a better understanding of the entire speech perception process. Experiment 3 was conducted to determine whether the automaticity of the tasks (Schneider & Shiffrin, 1977) helped to explain the results of the first two experiments. It was found that cell phone speech allowed better simultaneous pursuit rotor performance only at low intelligibility levels when participants ignored the listening task. Also, simultaneous task performance improved dramatically for natural speech when intelligibility was good. Overall, it could be concluded that knowledge of intelligibility alone is insufficient to characterize processing of different speech sources. Additional measures such as attentional demands and performance of simultaneous tasks were also important in characterizing the perception of different kinds of speech in complex listening environments.
Resumo:
Purpose - The purpose of this paper is to develop an efficient numerical algorithm for the self-consistent solution of Schrodinger and Poisson equations in one-dimensional systems. The goal is to compute the charge-control and capacitance-voltage characteristics of quantum wire transistors. Design/methodology/approach - The paper presents a numerical formulation employing a non-uniform finite difference discretization scheme, in which the wavefunctions and electronic energy levels are obtained by solving the Schrodinger equation through the split-operator method while a relaxation method in the FTCS scheme ("Forward Time Centered Space") is used to solve the two-dimensional Poisson equation. Findings - The numerical model is validated by taking previously published results as a benchmark and then applying them to yield the charge-control characteristics and the capacitance-voltage relationship for a split-gate quantum wire device. Originality/value - The paper helps to fulfill the need for C-V models of quantum wire device. To do so, the authors implemented a straightforward calculation method for the two-dimensional electronic carrier density n(x,y). The formulation reduces the computational procedure to a much simpler problem, similar to the one-dimensional quantization case, significantly diminishing running time.
Resumo:
We study the firing rate properties of a cellular automaton model for a neuronal network with chemical synapses. We propose a simple mechanism in which the nonlocal connections are included, through electrical and chemical synapses. In the latter case, we introduce a time delay which produces self-sustained activity. Nonlocal connections, or shortcuts, are randomly introduced according to a specified connection probability. There is a range of connection probabilities for which neuron firing occurs, as well as a critical probability for which the firing ceases in the absence of time delay. The critical probability for nonlocal shortcuts depends on the network size according to a power-law. We also compute the firing rate amplification factor by varying both the connection probability and the time delay for different network sizes. (C) 2011 Elsevier B.V. All rights reserved.
A Comparative Analysis between Ultrasonometry and Computer-Aided Tomography to Evaluate Bone Healing
Resumo:
An ultrasonometric and computed-tomographic study of bone healing was undertaken using a model of a transverse mid-shaft osteotomy of sheep tibiae fixed with a semi-flexible external fixator. Fourteen sheep were operated and divided into two groups of seven according to osteotomy type, either regular or by segmental resection. The animals were killed on the 90th postoperative day and the tibiae resected for the in vitro direct contact transverse and axial measurement of ultrasound propagation velocity (UV) followed by quantitative computer-aided tomography (callus density and volume) through the osteotomy site. The intact left tibiae were used for control, being examined in a symmetrical diaphyseal segment. Regular osteotomies healed with a smaller and more mature callus than resection osteotomies. Axial UV was consistently and significantly higher (p?=?0.01) than transverse UV and both transverse and axial UV were significantly higher for the regular than for the segmental resection osteotomy. Transverse UV did not differ significantly between the intact and operated tibiae (p?=?0.20 for regular osteotomy; p?=?0.02 for resection osteotomy), but axial UV was significantly higher for the intact tibiae. Tomographic callus density was significantly higher for the regular than for the resection osteotomy and higher than both for the intact tibiae, presenting a strong positive correlation with UV. Callus volume presented an opposite behavior, with a negative correlation with UV. We conclude that UV is at least as precise as quantitative tomography for providing information about the healing state of both regular and resection osteotomy. (C) 2011 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 30:10761082, 2012
Resumo:
[EN]A new algorithm for evaluating the top event probability of large fault trees (FTs) is presented. This algorithm does not require any previous qualitative analysis of the FT. Indeed, its efficiency is independent of the FT logic, and it only depends on the number n of basic system components and on their failure probabilities. Our method provides exact lower and upper bounds on the top event probability by using new properties of the intrinsic order relation between binary strings. The intrinsic order enables one to select binary n-tuples with large occurrence probabilities without necessity to evaluate them. This drastically reduces the complexity of the problem from exponential (2n binary n-tuples) to linear (n Boolean variables)...
Resumo:
Tumors involving bone and soft tissues are extremely challenging situations. With the recent advances of multi-modal treatment, not only the type of surgery has moved from amputation to limb-sparing procedures, but also the survivorship has improved considerably and reconstructive techniques have the goal to allow a considerably higher quality of life. In bone reconstruction, tissue engineering strategies are the main area of research. Re-vascularization and re-vitalisation of a massive allograft would considerably improve the outcome of biological reconstructions. Using a rabbit animal model, in this study we showed that, by implanting a vascular pedicle inside a weight bearing massive cortical allograft, the bone regeneration inside the allograft was higher compared to the non-vascularized implants, given the patency of the vascular pedicle. Improvement in the animal model and the addition of Stem Cells and Growth factors will allow a further improvement in the results. In soft tissue tumors, free and pedicled flaps have been proven to be of great help as reconstruction strategies. In this study we analyzed the functional and overall outcome of 14 patients who received a re-innervated vascularized flap. We have demonstrated that the use of the innovative technique of motor re-innervated muscular flaps is effective when the resection involves important functional compartments of the upper or lower limb, with no increase of post-operative complications. Although there was no direct comparison between this type of reconstruction and the standard non-innervated reconstruction, we underlined the remarkable high overall functional scores and patient satisfaction following this procedure.
Resumo:
III-nitrides are wide-band gap materials that have applications in both electronics and optoelectronic devices. Because to their inherent strong polarization properties, thermal stability and higher breakdown voltage in Al(Ga,In)N/GaN heterostructures, they have emerged as strong candidates for high power high frequency transistors. Nonetheless, the use of (Al,In)GaN/GaN in solid state lighting has already proved its success by the commercialization of light-emitting diodes and lasers in blue to UV-range. However, devices based on these heterostructures suffer problems associated to structural defects. This thesis primarily focuses on the nanoscale electrical characterization and the identification of these defects, their physical origin and their effect on the electrical and optical properties of the material. Since, these defects are nano-sized, the thesis deals with the understanding of the results obtained by nano and micro-characterization techniques such as atomic force microscopy(AFM), current-AFM, scanning kelvin probe microscopy (SKPM), electron beam induced current (EBIC) and scanning tunneling microscopy (STM). This allowed us to probe individual defects (dislocations and cracks) and unveil their electrical properties. Taking further advantage of these techniques,conduction mechanism in two-dimensional electron gas heterostructures was well understood and modeled. Secondarily, origin of photoluminescence was deeply investigated. Radiative transition related to confined electrons and photoexcited holes in 2DEG heterostructures was identified and many body effects in nitrides under strong optical excitations were comprehended.